Skip to main content
Log in

Application of multivariate data analysis methods to Comparative Molecular Field Analysis (CoMFA) data: Proton affinities and pKa prediction for nucleic acids components

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Multivariate data analysis methods (Principal Component Analysis (PCA) and Partial Least Squares (PLS)) are applied to the analysis of the CoMFA (Comparative Molecular Field Analysis) data for several nucleic acids components. The data set includes nitrogenated bases, nucleosides, linear nucleotides, 3′, 5′-cyclic nucleotides and oligonucleotides. PCA is applied to study the structure of the CoMFA data and to detect possible outliers in the data set. PLS is applied to correlate the CoMFA data with either calculated AM1 proton affinities or with experimental pKa values. The possibility of making a prediction of pKa values directly from 3D structures of the monomers for polynucleotides is also shown. The influence of the superposition criteria and of conformational changes along the glycosidic bond on the pKa prediction are studied as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  2. Kim, K.H., ACS Symposium Series, 606 (1995) 302.

    Google Scholar 

  3. Kim, K.H. and Martin, Y.C., J. Med. Chem., 34 (1991) 2056.

    Google Scholar 

  4. Martin, Y.C., Wu, J., Curley, J.F. and Kim, K.H., Abstracts of Papers of the ACS, 211 (1996) 149.

    Google Scholar 

  5. Kim, K.H. and Martin, Y.C., J. Org. Chem., 56 (1991) 2723.

    Google Scholar 

  6. Saenger, W. (Ed.) Principles of Nucleic Acid Structure, Springer-Verlag, New York, NY, 1988.

    Google Scholar 

  7. Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 36 (1996) 572.

    Google Scholar 

  8. Massart, D.L., Vandeginste, B.G.M., Deming, Y., Michotte, L. and Kaufman, L., Chemometrics. A Textbook, Elsevier, Amsterdam, 1988.

    Google Scholar 

  9. Norinder, U. and Jonsson, J., Quant. Struct.-Act. Relat., 13 (1994) 295.

    Google Scholar 

  10. Burger, K. (Ed.) Biocoordination Chemistry, Ellis Horwood Ltd, Chichester, U.K., 1990.

    Google Scholar 

  11. Casassas, E., Gargallo, R., Gimenez, I., Izquierdo-Ridorsa, A. and Tauler, R., Anal. Chim. Acta, 283 (1993) 538.

    Google Scholar 

  12. Tauler, R., Izquierdo-Ridorsa, A., Gargallo, R. and Casassas, E., Chemometr. Intel. Lab. Syst., 27 (1995) 163.

    Google Scholar 

  13. Casassas, E., Gargallo, R., Izquierdo-Ridorsa, A. and Tauler, R., Reactive Polymers, 27 (1995) 1.

    Google Scholar 

  14. Casassas, E., Marques, I. and Tauler, R., Macromolecules, 27 (1994) 1729.

    Google Scholar 

  15. SYBYL 6.3, Tripos Associates, St. Louis, MO.

  16. Visvanadham, V., Reddy, R.M., Bacquet, R.J. and Erion, M.D., J. Comput. Chem., 14 (1993) 1019.

    Google Scholar 

  17. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  18. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J. L., Replogle, E.S., Comperts, R., Martin, R.L., Fow, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A., Gaussian 94, Gaussian Inc., Pittsburgh, PA, 1995.

    Google Scholar 

  19. Pointet, K., Milliet, A., Hoyau, S. and Renou-Gonnord, F.R., J. Comput. Chem., 18 (1997) 629.

    Google Scholar 

  20. Stull, D.R. and Prophet, H. (Eds) JANAF Thermochemical Tables, Vol. 37, National Reference Data Service, National Bureau of Standards NSRDS-NBS, U.S. Government Printing Office, Washington, DC, 1971.

    Google Scholar 

  21. Geladi, P., J. Chemometr., 2 (1988) 231.

    Google Scholar 

  22. Wold, S., Albano, C., Dunn, W.J., Edlung, U., Esbenson, K., Geladi, P., Hellberg, S., Lindberg, W. and Sjöström, M., In Kowalski, B.R. (Ed.) Chemometrics: Mathematics and Statistics in Chemistry, Reidel, Dordrecht, The Netherlands, 1984, pp. 17–94.

    Google Scholar 

  23. Diaconis, P. and Efron, B., Sci. Am., 116 (1984) 96.

    Google Scholar 

  24. Wold, S., Technometrics, 4 (1978) 397.

    Google Scholar 

  25. Greco, F., Liguori, A., Sindona, G. and Uccella, N., J. Am. Chem. Soc., 112 (1990) 9092.

    Google Scholar 

  26. Hunter, E.P. and Lias, S.G., J. Phys. Chem. Ref. Data, in press.

  27. Hunter, E.P., Lias, S.G., Brown, R.L. and Stein, S.E., In Mallard, W.G. and Linstrom, P.J. (Eds.) NIST Standard Reference Database Number 69, February 1997, National Institute of Standards and Technology, Gaithersburg, MD (http://webbook.nist.gov).

    Google Scholar 

  28. Del Bene, J.E., J. Phys. Chem., 87 (1983) 367.

    Google Scholar 

  29. Forina, M., Drava, G., Boggia, R., Lanteri, S. and Conti, P., Anal. Chim. Acta, 295 (1994) 109.

    Google Scholar 

  30. Kroemer, R.T., Ettmayer, P. and Hecht, P., J. Med. Chem., 38 (1995) 4917.

    Google Scholar 

  31. Kroemer, R.T., Hecht, P., Guessregen, S. and Liedl, K.R., In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in Drug Design, Vol. 3: Recent Advances, Kluwer, Dordrecht, The Netherlands, 1998, pp. 41–56.

    Google Scholar 

  32. Wold, S., Johansson, E. and Cocchi, M., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design. Theory,Methods and Applications, ESCOM, Leiden, The Netherlands, 1993.

    Google Scholar 

  33. Casassas, E., Gargallo, R., Gimenez, I., Izquierdo-Ridorsa, A. and Tauler, R., J. Inorg. Biochem., 56 (1994) 187.

    Google Scholar 

  34. Izatt, R.M., Christensen, J.J. and Rytting, J.H., Chem. Rev., 71 (1971) 439.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gargallo, R., Sotriffer, C.A., Liedl, K.R. et al. Application of multivariate data analysis methods to Comparative Molecular Field Analysis (CoMFA) data: Proton affinities and pKa prediction for nucleic acids components. J Comput Aided Mol Des 13, 611–623 (1999). https://doi.org/10.1023/A:1008005522776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008005522776

Navigation