Skip to main content
Log in

The Rubella Virus Putative Replicase Interacts with the Retinoblastoma Tumor Suppressor Protein

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

In utero fetal infection of rubella virus (RV), a positive-stranded RNA virus, frequently induces birth defects if contracted in the first trimester of pregnancy. The underlying mechanism of RV-induced birth defects is not known. Birth defects are also common in certain DNA viral infections such as human cytomegalovirus (HCMV). During HCMV infection, one of its proteins interacts with a cell growth regulatory protein, the retinoblastoma protein (Rb) and stimulates DNA synthesis which is associated with chromosomal damage and cellular mitotic arrest. These affects have been implicated in HCMV induced teratogenesis. Since RV and HCMV both cause teratogenesis, we postulated that during RV infection, a virus-encoded protein might interact with Rb and affect fetal cell growth. In the present study, we have identified a known Rb-binding motif, L×C×E (LPCAE) in the carboxy-terminal half of the putative replicase (NSP90) of RV and demonstrated that the C-terminal region specifically binds to GST-Rb in vitro. Further, by coimmunoprecipitating NSP90 and Rb using specific antibodies to respective proteins, we have confirmed that NSP90 specifically binds to Rb in vivo as well. In addition, RV replication was shown to be less in null-mutant (Rb−/−) mouse embryonic fibroblast cells than in wild-type (Rb+/+) cells, suggesting a possible physiological role for this interaction. Thus, in facilitating RV replication, binding of NSP90 to Rb potentially alters the cell growth regulatory property of Rb, and this could be one of the initial steps in RV-induced teratogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frey T.K., Advances in Virus Res 44, 64–159, 1994.

    Google Scholar 

  2. Gregg N.M., Trans Ophthalmol Soc Aust 3, 35–46, 1941.

    Google Scholar 

  3. Munro N.D., Sheppard S., Smithells R.W., Holzel H., and Jones G., Lancet 2, 201–204, 1987.

    Article  CAS  PubMed  Google Scholar 

  4. Ray C.G., in Braunwald E., Isselbacher K.J., and Petersdorf R.G. (eds). Principles of Internal Medicine. McGraw-Hill, New York, 1987, pp. 684–686.

    Google Scholar 

  5. Jault F.M., Jault J-M., Ruchti Fortunato E.A., Clark C., Corbeil J., Richman D.D., and Spector D.H., J Virol 69, 6697–6704, 1995.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kamiya S., Tanaka J., Ogura T., Ogura H., Sato H., and Hatano M. Arch Virol, 89, 131–144, 1986.

    Article  CAS  PubMed  Google Scholar 

  7. Fortunato E.A., Sommer H.M., Yoder K., and Spector D.H., J Virol 71, 8176–8185, 1997.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Taya Y., TIBS, 22, 14–17, 1997.

    CAS  PubMed  Google Scholar 

  9. White R., TIBS, 22, 77–80, 1997.

    CAS  PubMed  Google Scholar 

  10. Wang J.Y.J., Knudsen E.S., and Welch P., Advances in Cancer Res 54, 26–85, 1994.

    Google Scholar 

  11. Plotkin S.A. and Vaheri A., Science, 156, 659–661, 1967.

    Article  CAS  PubMed  Google Scholar 

  12. Nakhasi H.L., Rouault T.A., Haile D.J., Liu T-Y., and Klausner R.D., New Biol 2, 255–264, 1990.

    CAS  PubMed  Google Scholar 

  13. Chen P-L., Riley D.J., and Lee W-H., Genes & Dev 10, 2794–2804, 1996.

    Article  CAS  Google Scholar 

  14. Dominguez G., Wang C-Y., and Frey T.K., Virology, 177, 225–238, 1990.

    Article  CAS  PubMed  Google Scholar 

  15. Durfee T., Becherer K., Chen P-L., Yeh S-H., Yang Y., Kilbum A., Lee W-H., and Elledge S.J., Genes & Dev 7, 555–569, 1993.

    Article  CAS  Google Scholar 

  16. Singh N.K., Atreya C.D., and Nakhasi H.L., Proc Natl Acad Sci USA 91, 12770–12774, 1994.

    Article  CAS  PubMed  Google Scholar 

  17. Forng Y.T, and Frey T.K., Virology, 206, 843–853, 1995.

    Article  CAS  PubMed  Google Scholar 

  18. Atreya C.D. and Pirone T.P., Proc Natl Acad Sci USA, 90, 11919–11923, 1993.

    Article  CAS  PubMed  Google Scholar 

  19. Ponte P., Ng S-Y., Engel J., Gunning P., and Kedes L., Nucleic acid Res 12, 1687-, 1984

    Article  CAS  PubMed  Google Scholar 

  20. Gillam S. (Genbank Accession No. X72393).

  21. Johnstone P. Cloning and sequence analysis of rubella virus nonstructural protein coding region. Ph. D. Thesis, University of Surrey, UK, 1994.

    Google Scholar 

  22. Pugachev K.V., Abemathy E.S., and Frey T.K., Arch Virol 141, 1165–1180, 1997.

    Article  Google Scholar 

  23. Lamb R.A. and Krug R. in Fields B.N., Knipe D.M., and Howley P.M. (eds). Field's Virology. Lippincott-Raven publishers, New York, pp. 1353–1396.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atreya, C.D., Lee, N.S., Forng, RY. et al. The Rubella Virus Putative Replicase Interacts with the Retinoblastoma Tumor Suppressor Protein. Virus Genes 16, 177–183 (1998). https://doi.org/10.1023/A:1007998023047

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007998023047

Navigation