Landscape Ecology

, Volume 12, Issue 4, pp 213–221 | Cite as

Fractals and search paths in mammals

  • Jordi Bascompte
  • Carles Vilà
Article

Abstract

The fractal index by Katz and George (1985) for thecharacterization of planar curves is applied to wolf search pathsrecorded by radio-telemetry. All the sets of paths studied showspatial patterns whose complexity is between a straight line anda true random walk. Females‘ fractal dimensions show significantchanges throughout the year, depending on the state of their lifecycle (normal, breeding and wandering). There are alsodifferences between males and females, but not between adults andnon-adults. The results are discussed with regard to wolffood-search strategies.

fractal dimension wolves tracking patterns of movement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bascompte, J. and R.V. Solé. 1995. Rethinking complexity: modelling spatiotemporal dynamics in ecology. Trends Ecol. Evol. 10: 361–366.Google Scholar
  2. Batschelet, E. 1981. Circular statistics in biology. Academic Press, London.Google Scholar
  3. Bradbury, R.H., R.E. Reicheet and D.G. Green. 1984. Fractals in ecology: methods and interpretation. Mar. Ecol. Prog. Ser. 14: 295–296.Google Scholar
  4. Bovet, P. and S. Benhamou. 1988. Spatial analysis of animal's movements using a correlated random walk model. J. Theor. Biol. 131: 419–433.Google Scholar
  5. Burlando, B. 1990. The fractal dimension of taxonomic systems. J. Theor. Biol. 146: 99–114.Google Scholar
  6. Burlando, B. 1993. The fractal geometry of evolution. J. Theor. Biol. 163: 161–172.Google Scholar
  7. Cody, M.L. 1971. Finch flocks in the Mohave Desert. Theor. Popul. Biol. 2: 142–158.Google Scholar
  8. Cuesta, L., F. Bárcena, F. Palacios and S. Reig. 1991. The trophic ecology of the Iberian wolf (Canis lupus signatus Cabrera 1907). A new analysis of stomach's data. Mammalia 55: 239–254.Google Scholar
  9. Fujikawa, H. and M. Matsushita. 1989. Fractal growth of Bacillus subtilison agar plates. J. Phys. Soc. Jpn. 58: 3875–3878.Google Scholar
  10. Gautestad, A.O. and I. Mysterud. Fractal analysis of population ranges: methodological problems and challenges. Oikos 69: 154–157.Google Scholar
  11. Goldberger, A.L., V. Bhargava, B.J. Wesr and A.J. Mandell. 1985. On a mechanism of cardiac electrical stability. The fractal hypothesis. Biophys. J. 48: 525–528.Google Scholar
  12. Joslin, P.W.B. 1967. Movements and home sites of timber wolves in Algonquin Park. Am. 7: 279–288.Google Scholar
  13. Kareiva, P.M. and N. Shigesada. 1983. Analyzing insect movement as a correlated random walk. Oecologia 56: 234–238.Google Scholar
  14. Katz, M.J. and E. George. 1985. Fractals and the analysis of growth paths. Bull. Math. Biol. 47: 273–286.Google Scholar
  15. Krummel, J.R., R.H. Gardner, G. Sugihara, R.V. O'Neil and P.R. Coleman. 1987. Landscape patterns in a disturbed environment. Oikos 48: 321–324.Google Scholar
  16. Lewis, M.A. and J.D. Murray. 1993. Modelling territoriality and wolf-deer interactions. Nature 366: 738–740.Google Scholar
  17. Loehle, C. 1990. Home range: a fractal approach. Landsc. Ecol. 5: 39–52.Google Scholar
  18. Mach, J., F. Mas and F. Sagués. 1994. Laplacian multifractality of growth probability distribution in electrodeposition. Europhys. Lett. 25: 271–276.Google Scholar
  19. Mandelbrot, B.B. 1977. Fractals: form, chance, and dimension. Freeman, San Francisco.Google Scholar
  20. Mandelbrot, B.B. 1983. The fractal geometry of nature. Freeman, San Francisco.Google Scholar
  21. Mandelbrot, B.B. 1984. Fractals in physics: Squig clusters, diffusions, fractal measures, and the unicity of fractal dimensionality. J. Stat. Phys. 34: 895–930.Google Scholar
  22. Matsushita, M. and M. Fujikawa. 1990. Diffusion-limited growth in bacterial colony formation. Physica A 168: 498–506.Google Scholar
  23. Mech, L.D. 1983. Handbook of animal radio-tracking. University of Minnesota Press, Minneapolis.Google Scholar
  24. Pyke, G.H. 1978. Optimal foraging: movement patterns of bumblebees between inflorescences. Theor. Pop. Biol. 13: 72–98.Google Scholar
  25. Pyke, G.H. 1981. Optimal foraging in hummingbirds: rule of movement between inflorescences. Anim. Behav. 29: 882–896.Google Scholar
  26. Pyke, G.H. 1983. Animal movements: an optimal foraging approach. InThe Ecology of Animal Movement. Edited by I.R. Swingland and P.J. Greenwod. Clarendon Press, Oxford.Google Scholar
  27. Salvador, A. and P.L. Abad. 1987. Food habits of a wolf population (Canis lupus) in León Province, Spain. Mammalia 51: 45–52.Google Scholar
  28. Shlesinger, M.F. and B.J. West. 1991. Complex fractal dimension of the bronchial tree. Phys. Rev. Lett. 67: 2106–2108.Google Scholar
  29. Sugihara, G. and R.M. May. 1990. Applications of fractals in ecology. Trends Ecol. Evol. 5: 79–86.Google Scholar
  30. Van Ballenberghe, V. 1983. Extraterritorial movements and dispersal of wolves in southcentral Alaska. J. Mamm. 64: 168–171.Google Scholar
  31. Vilà, C. 1993. Aspectos morfológicos y ecológicos del lobo ibérico Canis lupusL. Ph.D. thesis. University of Barcelona.Google Scholar
  32. White, G.C. and R.A. Garrott. 1990. Analysis of wildlife radio-tracking data. Academic Press, San Diego.Google Scholar
  33. Wiens, J.A. and B.T. Milne. 1989. Scaling of “landscapes” in landscape ecology, or, landscape ecology from a beetle's perspective. Landsc. Ecol. 3: 87–96.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jordi Bascompte
    • 1
  • Carles Vilà
    • 2
  1. 1.Departament d‘EcologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Estación Biológica de DoñanaConsejo Superior de Investigaciones CientíficasSevillaSpain

Personalised recommendations