Skip to main content
Log in

T2L2 - Time transfer by Laser link: a new optical time transfer generation

  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The T2L2 experiment allows the synchronisation of remote clocks on Earth, and the monitoring of a satellite clock with an accuracy in the 50 ps range. It is based on the propagation of light pulses in space which is better controlled than the radio waves propagation. Some new optical timer and the definition of a new time origin allow direct accurate time transfer without external calibration. The time equations and the uncertainty budget are presented so as to justify the announced performance. This optical time transfer associated to an ultra-stable clock in space has many scientific application as the study of some aspects of the gravitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fridelance P., Lexpirience LASSO,these de doctorat de physique de l'universite Paris 6,1994.

  2. Fridelance P., Veillet C., Operation and data analysis in the LASSO experiment,Metrologia, 32, 27–33, 1995.

    Google Scholar 

  3. Veillet C., Fridelance P., Fraudy D., Boudon Y., Shelus P.J., Ricklefs R.L, Wiant J.R.: LASSO observations at Mc Donald (Texas, USA) and OCA/CERGA (Grasse, France). A preliminary analysis,Proc. 24 th Precise Time and Time Interval Meeting (PTII), Virginia, USA, pp. 113–120,1992.

  4. Veillet C, Fridelance P.: Time transfer between USA and France through LASSO,Proc. 7 h Europeen Frequency and Time Forum (EFTF), Neuchftel, Suisse, pp. 6 37–640,1993.

  5. Lewandowski W., Petit G., Beaumont F., Fridelance P., Gaignebet J., Grudler P., Veillet C., Wiant J.R., Klepczynski W.J.: Comparison of LASSO and GPS time transfers,Proc. 25 th PTTI Meeting, California, USA, pp. 357–365,1993

  6. Lewandowski W., Thomas C., in proc. IEEE, 79, 991–1000,1991.

    Article  Google Scholar 

  7. Kirchner D., Two-way satellite time transfer via communication satellites,in proc. IEEE, 79, 983–990, 1991.

    Article  Google Scholar 

  8. Nau H., Hahn J., Bedricht S, Study on H-Maser in space,Draft final report, DLR Oberpfaffenhofen, Institute of Radio Frequency Technology, 1994.

  9. Starker S., SappI E., Schafer W., Microwave links for precise time and frequency transfer betweencground and space-based clocks,in proc. 7 t k EFTF, 693–698, 1993.

  10. Samain E. Le laser-Lune millimdtrique et Nouvelles mdthodes de datation optique,These de doctorat de l'Univeriste de Nice-Sophia Antipolis, 1995.

  11. Petit G, Wolf P., Relativistic theory for picosecond time transfer in the vicinity of the Earth,Astronomy and Astrophysics, 286, 971–977,1994.

    Google Scholar 

  12. IAU, Information Bulletin 67,7,1992.

    Google Scholar 

  13. Samain E, Optical statistical timer,submitted to proc. IEEE, 1996.

  14. Samain E., Mangin J.F., Detector studies for the millimetric Lunar-laser ranging,in proc. of the 9 t h international workshop on laser ranging instrumentation, 1994.

  15. Bender P.L., Atmospheric refraction and satellite ranging,in proc. of the Symposium "Refraction of transatmospheric signals in geodesy ",117–125, 1992.

  16. Allan D.W., Weiss M.A., Jespersen J.L., A frequency domain view of time domain characterisation of clocks and time and frequency distribution systems,45 e annual symposium on frequency control, 1991.

  17. Laurent P., Santarelli G., Lea S., Ghezali S., Bahoura M., Simon E., Clairon A., Lemonde P., Reichel J., Michaud A., Salomon C., Cesium fountains and micro-gravity clocks,in proc. of the 25 th Rencontre de Moriond, ed. Frontieres, 1990.

  18. Fridelance P. " Influence of the atmospheric turbulence on the uplink propagation in an optical time transfer ", submitted to Applied Optics, 1996.

  19. Busca G., Bernier L.G., Silverstrin P., Feltham S., Gaygerov B.A., Tatarenkov V.M., in proc. of the 25 th FTMI meeting, 467–475, 1993.

  20. Maleki L., Frequency standards from government laboratories over the next 25 years,in proc. of the 254 h PTTI meeting, 549–560, 1993.

  21. Vessot R.F.C., Levine M.W., Test of relativistic gravitation with a space-borne hydrogen maser,Physical Review Letters 45, No. 26, 2081–2084, 1980f.

    Article  Google Scholar 

  22. Will C.M., Gravitation redshift measurements as tests of non-metric theories of gravity,Phys. Rev. D., 10, 2330–2337, 1974.

    Article  Google Scholar 

  23. Veillet C., SORT, Solar Orbit Relativity Test,A proposal in the discipline area of fundamental physics in response to ESA's call for mission concepts for the follow-up to horizon 2000, 1994.

  24. Lebach D.E., Corey B.E., Shapiro I.I., Ratner M.I., Webber J.C., Rogers A.E.E., Davis J.L., Herring T.A., Measurement of the solar gravitational deflection of radio waves using very-long-baseline interferometry,Physical Review Letters, 75, No. 8, 1995.

  25. Bergmann P.G., Comments on the scalar-tensor theory,Int. J. Theor. Phys., 1, 25–36, 1968.

    Google Scholar 

  26. Wagoner R.V., Scalar-tensor theory and gravitational waves,Phys. Rev., D1, 3209–3216, 1970.

    Google Scholar 

  27. Nordtvedt K., Post-Newtonian metric for a general class of scalar-tensor theories and observational consequences,Astrophys. J., 161, 1059–1067, 1970.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fridelance, P., Samain, E. & Veillet, C. T2L2 - Time transfer by Laser link: a new optical time transfer generation. Experimental Astronomy 7, 191–207 (1997). https://doi.org/10.1023/A:1007982512087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007982512087

Navigation