Skip to main content
Log in

Sediment-chemistry response to land-use change and pollutant loading in a hypertrophic lake, southern Sweden

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Responses to recent land-use changes and pollutant loading in the sediment of a hypertrophic lake in southern Sweden were studied by comparison of geochemical, pollen and magnetic records with historical land-use data. A chronology was constructed for the last two centuries by correlating changes in the pollen diagram to major events in the land-use history. Sediment accumulation was low (mean c. 0.2 g cm-2 yr-1) prior to 1800 AD, when less than 25% of the catchment was arable land. Reorganization of the agrarian system during the 19th century increased the annually tilled area by 300%, which accelerated soil erosion and substantially increased the accumulation of allochtonous matter in the lake. Since the turn of the century 90% of the catchment has been ploughed every year. The deposition of clastic matter in the lake has, however, decreased due to a gradual rerouting of the drainage system, which has reduced the effective catchment area by c. 85%.

Authigenic vivianite (Fe3(PO4)2.8H2O) is a major P phase in the preindustrial non-sulphidic sediments, which suggests that the sediments at that time served as a fairly efficient sink for P. The arable expansion, increased manuring and, eventually, the introduction of artificial fertilizers during the 19th century led to a massive influx of nutrients, which elevated primary production in the lake. Subsequent development of bottom water anoxia around 1900, in combination with an additional pollutant burden of sulphate within the lake basin, led to major alterations of the biogeochemical cycles. The most critical change in the post-1900 sediments involved the cycling of Fe and P. The linkage between the lacustrine P and Fe cycles can explain that FeS formation was paralleled by a release of P from the sedimentary pool. This supply of P to the lake basin must have supplemented the nutrient supply by modern agriculture and contributed to recent hypertrophication. The bacterial sulphate reduction also affected the generation of alkalinity which supported a significant calcite precipitation in the post-1900 sediments.

S is enriched 10-fold in the post-1900 sediments compared to preindustrial values. Along with the rise in S, soot particles derived from fossil fuel combustion appear in the sediments for the first time. Therefore, Bussj¨osj¨on is thought to be a good example of how a well-buffered, highly productive lake may respond to the pollution by sulphur from acid rain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, N. J. & B. V. Odgaard, 1994. Recent palaeolimnology of three shallow Danish lakes. Hydrobiologia 275/276: 411–422.

    Google Scholar 

  • Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorous profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253: 357–366.

    Google Scholar 

  • Bahnson, H., 1968. Kolorimetriske bestemmelser af humificeringstal i højmosetørv fra Fuglsø mose på Djursland. Medd. fra Dansk Geologisk Forening 18–1: 55–63.

    Google Scholar 

  • Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. Soc. Lond. B 305: 451–477.

    Google Scholar 

  • Battarbee, R. W., 1989. Geographical research on acid rain. The acidification of Scottish lochs. The Geographical J. 155: 353–377.

    Google Scholar 

  • Belekopytov, I. E. & V. V. Beresnevich, 1955. Giktorf's peat borers. Torf. Prom. 8: 9–10.

    Google Scholar 

  • Bengtsson, L. & M. Enell, 1986. Chemical analysis. In Berglund, B. E. (ed.), Handbook of Holocene palaeoecology and palaeohydrology. Wiley & Sons. Chichester: 423–451.

    Google Scholar 

  • Berglund, B. E. & M. Ralska-Jasiewiczowa, 1986. Pollen analysis and pollen diagrams. In Berglund, B. E. (ed.), Handbook of Holocene palaeoecology and palaeohydrology. Wiley & Sons. Chichester: 455–484.

    Google Scholar 

  • Berner, R. A., 1971. Principles of chemical sedimentology. McGraw-Hill. New York, 240 pp.

    Google Scholar 

  • Berner, R. A., 1981a. Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortsch. Min. 59: 117–135.

    Google Scholar 

  • Berner, R. A., 1981b. A new geochemical classification of sedimentary environments. J. Sed. Petrol. 51: 359–365.

    Google Scholar 

  • Birks, H. J. B. & H. H. Birks, 1980. Quaternary palaeoecology. Edward Arnold. London. 289 pp.

    Google Scholar 

  • Björck, S., J. A. Dearing & A. Jonsson, 1982. Magnetic susceptibility of Late-Weichselian deposits in southeastern Sweden. Boreas 11: 99–111.

    Google Scholar 

  • Canfield D. E. & R. A. Berner, 1987. Dissolution and pyritization of magnetite in anoxic marine sediments. Geoch. Cosmoch. Acta 51: 645–659.

    Google Scholar 

  • Caraco, N. F., 1993. Disturbance of the Phosphorus Cycle: A Case of Indirect Effects of Human Activity. TREE 8–2: 51–54.

    Google Scholar 

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318.

    Google Scholar 

  • Cook, R. B. & D. W. Schindler, 1983. The biogeochemistry of sulfur in an experimentally acified lake. Ecol. Bull. 35: 115–127.

    Google Scholar 

  • Cook, R. B., R. G. Kreis Jr., J. Kingston, K. E. Camburn, S. A. Norton, M. J. Mitchell, B. Fry & L. C. K. Shane, 1990. Paleolimnology of McNearny Lake: an acidified lake in northern Michigan. J. Paleolim. 3: 13–34.

    Google Scholar 

  • Dearing, J. A., K. Alström, A. Bergman, J. Regnéll & P. Sandgren, 1990. Recent and Long-term Records of Soil Erosion from Southern Sweden. In Boardman, J., I. D. L; Foster & J. A. Dearing (eds). Soil Erosion on Agricultural Land. John Wiley & Sons, Chisester, 173–591.

    Google Scholar 

  • Digerfeldt, G., 1972. The Post-Glacial development of Lake Trummen. Regional vegetation history, water level changes and palaeolimnology. Folia limn. scand. 16: 96 pp.

  • Digerfeldt, G. & U. Lettevall, 1969. A new type of sediment sampler. Geol. För. Stockholm För. 91: 399–406.

    Google Scholar 

  • Drever, J. I., 1973. The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique. Am. Miner. 58: 553–554.

    Google Scholar 

  • Emanuelsson, U., C. Bergendorff, B. Carlsson, N. Lewan & O. Nordell, 1985. Det skånska kulturlandskapet. Signum, Lund, 248 pp.

  • Emerson, S. & G. Widmer, 1978. Early diagenesis in anaerobic lake sediments — II. Thermodynamic and kinetic factors controlling the formation of iron phosphate. Geoch. Cosmoch. Acta 42: 1307–1316.

    Google Scholar 

  • Engstrom, D. R. & H. E. Wright Jr., 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In Haworth, E. Y. & J. W. G. Lund (eds). Lake Sediments and Environmental History. Leicester University Press: 11–68.

  • Faure, G., J. H. Crocket & P. M. Hurley, 1967. Some aspects of the geochemistry of strontium and calcium in the Hudson Bay and the Great Lakes. Geoch. Cosmoch. Acta 31: 451–461.

    Google Scholar 

  • Gaillard, M.-J., J. A. Dearing, F. El-Daoushy, M. Enell & H. Håkansson, 1991. A late Holocene record of land-use history, soil erosion, lake trophy and lake-level fluctuations at Bjäresjösjön (South Sweden). J. Paleolim. 6: 51–81.

    Google Scholar 

  • Germundsson, T., 1987. Population, landholding and the landscape. En arbetsrapport från Kulturlandskapet under 6000 år. Department of Plant Ecology, Lund University, 33 pp.

  • Germundsson, T. & A. Persson, 1987. Odling och djurhållning i Ystadsområdet på 1850-talet. En arbetsrapport från Kulturlandskapet under 6000 år. Department of Plant Ecology, Lund University, 124 pp.

  • Gorham, E. & J. E. Sanger, 1976. Fossilized pigments as stratigraphic indicators of cultural eutrophication in Shagawa Lake, northeastern Minnesota. Geol. Soc. Am. Bull. 87: 1638–1642.

    Google Scholar 

  • Håkansson, H. & J. Regnéll, 1993. Diatom succession related to land use during the last 6000 years: a study of a small eutrophic lake in southern Sweden. J. Paleolim. 8: 49–69.

    Google Scholar 

  • Hansen, K., 1959. Sediments from Danish lakes. J. Sed. Petrol. 29: 38–46.

    Google Scholar 

  • Havinga, A. J., 1971: An experimental investigation into the decay of pollen and spores in various soil types. In Brooks, J., P. R. Grant, M. Muir, P. van Gijzel & G. Shaw (eds), Sporopollenin. Academic Press, London, New York: 446–479.

    Google Scholar 

  • Holdren Jr., G. R., T. M. Brunelle, G. Matisoff & M. Wahlen, 1984: Timing the increase in atmospheric sulphur deposition in the Adirondack Mountain. Nature 311: 245–247.

    Google Scholar 

  • Hsu, P. H., 1977. Aluminium Hydroxides and Oxyhydroxides. In Dixon, J. B. & S. B. Weed (eds), Minerals in the soil environment. Soil Science Society of America, Madison, Wisconsin USA: 99–143.

    Google Scholar 

  • Hunt, C. P., M. J. Singer, G. Kletetschka, J. TenPas & K. L. Verosub, 1995. Effect of citrate-bicarbonate-dithionite treatment on finegrained magnetite and maghemite. Earth Planet. Letters 130: 87–94.

    Google Scholar 

  • Jones, B. F. & C. J. Bowser, 1978. The Mineralogy and Related Chemistry of Lake Sediments. In Lerman, A. (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag. New York: 179–235.

    Google Scholar 

  • Kinsman, D. J. J. & H. D. Holland, 1969. The co-precipitation of cations with CaCO3 — IV. The co-precipitation of Sr2+ with aragonite between 16° and 96°C. Geoch. Cosmoch. Acta 33: 157.

    Google Scholar 

  • Krausse, G. L., C. L. Schelske & C. O. Davis, 1983. Comparison of three wet-alkaline methods of digestion of biogenic silica in water. Freshwat. Biol. 13: 73–81.

    Google Scholar 

  • Leavitt, P. R., 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J. Paleolim. 9: 109–127.

    Google Scholar 

  • Linnaeus, C., 1751. Carl Linnaeus skånska resa år 1749. In von Sydow, C.-O. (ed.) 1977. Wahlström & Widstrand, Stockholm, 561 pp.

    Google Scholar 

  • Matisoff, G. & G. R. Holdren Jr., 1993. Historical loading record of sulfur in an Adirondack Lake. J. Paleolim. 9: 243–256.

    Google Scholar 

  • Mehra, O. P. & M. L. Jackson, 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Minerals. 7th Nat. Conf. Pergamon Press. London: 317–327.

    Google Scholar 

  • Mitchell, M. J., S. C. Schindler, J. S. Owen & S. A. Norton, 1988. Comparison of sulfur concentrations within lake sediments. Hydrobiologia 157: 219–229.

    Google Scholar 

  • Morgan, M. D., 1995. Modeling excess sulfur deposition on wetland soils using stable sulfur isotopes. Wat., Air, Soil Pollut. 79: 299–307.

    Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29: 280–329.

    Google Scholar 

  • Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 30: 147–201.

    Google Scholar 

  • Mylona, S., 1993. Trends of sulphur dioxide emissions, air concentrations and depositions of sulphur in Europe since 1880. EMEP/MSC-W Report 2/93. Norwegian Meteorological Institute, 52 pp.

  • Nanneson, L., 1914. Skånes nötkreatursskötsel från 1800-talets början till nuvarande tid. Skrifter utgivna av de skånska hushållningssällskapen vid deras hundrårsjubileum år 1914, 160 pp.

  • Nriagu, J. O. & R. D. Coker, 1983. Sulphur in sediments chronicles past changes in lake acidification. Nature 303: 692–694.

    Google Scholar 

  • Nriagu, J. & Y. K. Soon, 1985. Distribution and isotopic composition of sulfur in lake sediments of northern Ontario. Geoch. Cosmoch. Acta 49: 823–834.

    Google Scholar 

  • Odgaard, B. V., 1993. The sedimentary record of spheroidal carbonaceous fly-ash particles in shallow Danish lakes. J. Paleolim. 8: 171–187.

    Google Scholar 

  • Olsson, S., 1991. Geochemistry, mineralogy and porewater composition in uplifted, Late Weichselian-Early Holocene clays from southern Sweden. Lundqua Thesis 28, 89 pp.

  • Persson, A., 1987. Aspect on land use in Bussjö village in Bromma parish and Herrestad hundred in Scania c:a 1670–1910. En arbetsrapport från Kulturlandskapet under 6000 år. Department of Plant Ecology, Lund University, 20 pp.

  • Postma, D., 1981. Formation of siderite and vivanite and the pore-water composition of a recent bog sediment in Denmark. Chem. Geol. 31: 225–244.

    Google Scholar 

  • Regnéll, J., 1989. Vegetation and land-use during 6000 years. Palaeoecology of the cultural landscape at two lake sites in southern Skåne, Sweden. Lundqua Thesis 27, 62 pp.

  • Regnéll, J., 1992. Preparing pollen concentrates for AMS dating — a methodological study from a hard-water lake in southern Sweden. Boreas 21: 373–377.

    Google Scholar 

  • Renberg, I. & M. Wik, 1985. Soot particle counting in recent lake sediments: An indirect dating method. Ecol. Bull. 37: 53–57.

    Google Scholar 

  • Robison, S. G., 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Phys. Earth Planet. 42: 22–47.

    Google Scholar 

  • Rudd, J. W., C. A. Kelly, V. St. Louis, R. H. Hesslein, A. Furutani & M. H. Hokola, 1986. Microbial consumption of nitric and sulfuric acids in acidified north temperate lakes. Limnol. Oceanogr. 31(6): 1267–1280.

    Google Scholar 

  • Stober, J. C. & R. Thompson, 1979. Magnetic remanence acquisition in Finnish lake sediments. Geophys. J. R. Astr. Soc. 57: 727–739.

    Google Scholar 

  • Stumm, W. & P. Baccini, 1978. Man-Made Chemical Perturbations of Lakes; In Lerman, A. (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag. New York: 91–126.

    Google Scholar 

  • Supra 1989: Gödsel-och kalkningsmedel. Innehåll av växtnäring. Information folder from the Supra Company.

  • Swain, E. B., 1985. Measurement and interpretation of sedimentary plant pigments. Freshwat. Biol. 15: 53–75.

    Google Scholar 

  • Thompson, R. & F. Oldfield, 1986. Environmental Magnetism. Allen & Unwin, London, 227 pp.

    Google Scholar 

  • Troedsson, T. & M. Wiberg, 1986. Sveriges jordmåner (Soil map of Sweden). Kungl. Skogs-o. Lantbruksakademien. Stockholm.

  • Wetzel, R. G., 1983. Limnology. Saunders College Publishing. Philadelphia, 760 pp.

    Google Scholar 

  • Zachrison, A., 1914. Gödsling och jordförbättring i Skåne från 1800-talets början till nuvarande tid. Skrifter utgivna av de skånska hushållningssällskapen vid deras hundraårsjubileum år 1914. 55 pp.

  • Zachrison, A., 1922. Nyodling, torrläggning och bevattning i Skåne 1800–1914. Skrifter utgivna av de skånska hushållningssällskapen med anledning av deras hundraårsjubileum år 1914. II–4. 33 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, S., Regnéll, J., Persson, A. et al. Sediment-chemistry response to land-use change and pollutant loading in a hypertrophic lake, southern Sweden. Journal of Paleolimnology 17, 275–294 (1997). https://doi.org/10.1023/A:1007967832177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007967832177

Navigation