Skip to main content
Log in

The discovery of indicator variables for QSAR using inductive logic programming

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A central problem in forming accurate regression equations in QSAR studies isthe selection of appropriate descriptors for the compounds under study. Wedescribe a novel procedure for using inductive logic programming (ILP) todiscover new indicator variables (attributes) for QSAR problems, and show thatthese improve the accuracy of the derived regression equations. ILP techniqueshave previously been shown to work well on drug design problems where thereis a large structural component or where clear comprehensible rules arerequired. However, ILP techniques have had the disadvantage of only being ableto make qualitative predictions (e.g. active, inactive) and not to predictreal numbers (regression). We unify ILP and linear regression techniques togive a QSAR method that has the strength of ILP at describing stericstructure, with the familiarity and power of linear regression. We evaluatedthe utility of this new QSAR technique by examining the prediction ofbiological activity with and without the addition of new structural indicatorvariables formed by ILP. In three out of five datasets examined the additionof ILP variables produced statistically better results (P < 0.01) over theoriginal description. The new ILP variables did not increase the overallcomplexity of the derived QSAR equations and added insight into possiblemechanisms of action. We conclude that ILP can aid in the process of drugdesign.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansch, C., Maloney, P.P., Fujita, T. and Muir, R.M., Nature, 194 (1962) 178.

    Google Scholar 

  2. Martin, Y.C., Quantitative Drug Design: A Critical Introduction, Marcel Dekker, New York, NY, U.S.A., 1978.

    Google Scholar 

  3. Ramsden, C. (Ed.) Comprehensive Medicinal Chemistry, Vol. 4, Pergamon, Oxford, U.K., 1990.

    Google Scholar 

  4. Trinajstic, N., Chemical Graph Theory, CRC Press, Boca Raton, FL, U.S.A., 1983.

    Google Scholar 

  5. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J. and Hansch, C., J. Med. Chem., 34 (1991) 786.

    Google Scholar 

  6. Klopman, G., J. Am. Chem. Soc., 106 (1984) 7315.

    Google Scholar 

  7. Klopman, G., Quant. Struct.–Act. Relatsh., 11 (1992) 176.

    Google Scholar 

  8. Hopfinger, A.J., J. Am. Chem. Soc., 102 (1980) 7196.

    Google Scholar 

  9. Cramer, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  10. Hansch, C., Li, R.-I., Blaney, J.M. and Langridge, R., J. Med. Chem., 25 (1982) 777.

    Google Scholar 

  11. Muggleton, S. and Feng, C., In Proceedings of the First Conference on Algorithmic Learning Theory, Japanese Society of Artificial Intelligence, Tokyo, Japan, 1990, pp. 368–381.

    Google Scholar 

  12. King, R.D., Muggleton, S., Lewis, R.A. and Sternberg, M.J.E., Proc. Natl. Acad. Sci. USA, 89 (1992) 11322.

    Google Scholar 

  13. Hirst, J.D., King, R.D. and Sternberg, M.J.E., J. Comput.-Aided Mol. Design, 8 (1994) 405.

    Google Scholar 

  14. Hirst, J.D., King, R.D. and Sternberg, M.J.E., J. Comput.-Aided Mol. Design, 8 (1994) 421.

    Google Scholar 

  15. Muggleton, S.H., New Gen. Comput., 13 (1995) 245.

    Google Scholar 

  16. King, R.D., Muggleton, S.H., Srinivasan, A. and Sternberg, M.J.E., Proc. Natl. Acad. Sci. USA, 93 (1996) 438.

    Google Scholar 

  17. King, R.D. and Srinivasan, A., Environ. Health Perspect., 104 (Suppl. 5) (1996) 1031.

    Google Scholar 

  18. DeLong, H., A Profile of Mathematical Logic, Addison-Wesley, Reading, MA, U.S.A., 1970.

    Google Scholar 

  19. Bahler, D. and Bristol, D.W., In Intelligent Systems for Molecular Biology-93, AAI/MIT Press, Menlo Park, CA, U.S.A., 1993.

    Google Scholar 

  20. Lee, Y., Buchanan, B.G., Mattison, D.M., Klopman, G. and Rosenkranz, H.S., Mutat. Res., 328 (1995) 127.

    Google Scholar 

  21. Silipo, C. and Hansch, C., J. Am. Chem. Soc., 97 (1975) 6849.

    Google Scholar 

  22. Davis, A.M., Gensmantel, N.P., Johansson, E. and Marriott, D.P., J. Med. Chem., 37 (1994) 963.

    Google Scholar 

  23. Norusis, M.J., SPSS: Base System User Guide, Release 6.0, SPSS Inc., Chicago, IL, U.S.A., 1994.

    Google Scholar 

  24. Wallace, C.S. and Freeman, P.R., J. R. Statist. Soc., B49 (1987) 195.

    Google Scholar 

  25. Srinivasan, A., Muggleton, S.H., Sternberg, M.J.E. and King, R.D., A.I. Journal, (1997) in press.

  26. Topliss, J. and Edwards, R.P., J. Med. Chem., 22 (1979) 1238.

    Google Scholar 

  27. Wold, S., Technometrics, 20 (1978) 397.

    Google Scholar 

  28. Champness, J.N., Stammers, D.K. and Beddell, C.R., FEBS Lett., 199 (1986) 61.

    Google Scholar 

  29. Matthews, D.A., Bolin, J.T., Burridge, J.M., Filman, D.J., Volz, K.W., Kaufman, B.T., Beddell, C.R., Champness, J.N., Stammers, D.K. and Kraut, J., J. Biol. Chem., 260 (1985) 381.

    Google Scholar 

  30. Roth, B., Aig, E., Rauckman, B.S., Srelitz, J.Z., Phillips, A.P., Ferone, R., Bushby, S.R.M. and Siegel, C.W., J. Med. Chem., 24 (1981) 933.

    Google Scholar 

  31. Andrea, T.A. and Kalayeh, H., J. Med. Chem., 34 (1991) 2824.

    Google Scholar 

  32. So, S.-S. and Richards, W.G., J. Med. Chem., 35 (1992) 3201.

    Google Scholar 

  33. Kubinyi, H., Quant. Struct.–Act. Relatsh., 13 (1994) 285.

    Google Scholar 

  34. Glen, R.A. and Payne, A.W.R., J. Comput.-Aided Mol. Design, 9 (1995) 181.

    Google Scholar 

  35. Michie, D., Spiegelhalter, D.J. and Taylor, C.C., Machine Learning, Neural and Statistical Classification, Ellis Horwood, London, U.K., 1994.

    Google Scholar 

  36. Frank, I.E. and Friedman, J.H., Technometrics, 35 (1993) 109.

    Google Scholar 

  37. Michalski, R.S., In Michalski, R.S., Carbonnel, J. and Mitchell, T. (Eds.) Machine Learning: An Artificial Approach, Morgan Kaufmann, Los Altos, CA, U.S.A., 1986, pp. 83–134.

    Google Scholar 

  38. Lavrac, N. and Dzeroski, S., Inductive Logic Programming Techniques and Applications, Ellis Horwood, London, U.K., 1994.

    Google Scholar 

  39. King, R.D., Srinivasan, A. and Sternberg, M.J.E., New Gen. Comput., 13 (1995) 411.

    Google Scholar 

  40. Muggleton, S., Page, D. and Srinivasan, A., In Inductive Logic Programming 96, Stockholm, Sweden, 1996

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, R.D., Srinivasan, A. The discovery of indicator variables for QSAR using inductive logic programming. J Comput Aided Mol Des 11, 571–580 (1997). https://doi.org/10.1023/A:1007967728701

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007967728701

Navigation