Skip to main content
Log in

Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hoare, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake-wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4–16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (26–31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta). Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process influencing species composition and abundance of diatom assemblages in the benthic microbial mats is episodic deposition of coarse sediment from the ice surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, D. W., R. A. Wharton Jr. & S. W. Squyres, 1993. Terrigenous clastic sedimentation in Antarctic dry valley lakes. In W. J. Green & E. I. Friedmann (eds), Physical and Biogeochemical Processes in Antarctic Lakes. Antarctic Research Series, American Geophysical Union, Washington, D.C.: 71–81.

    Google Scholar 

  • Baker, A. N., 1967. Algae from Lake Miers, a solar-heated Antarctic lake. New Zealand J. Bot. 5: 453–468.

    Google Scholar 

  • Battarbee, R. W., 1973. A new method for estimating absolute microfossil numbers with special reference to diatoms. Limnol. Oceanogr. 18: 179–185.

    Google Scholar 

  • Benson, L. V. & F. L. Paillet, 1989. The use of total lake-surface area as an indicator of climatic change: examples from the Lahontan Basin. Quat. Res. 32: 262–275.

    Google Scholar 

  • Björk, S. H., H. Håkansson, R. Zale, W. Karlén & B. D. Jönsson, 1991. A late Holocene sequence from Livingston Island, South Shetland Islands, with paleoclimatic implications. Antarct. Sci. 3: 61–72.

    Google Scholar 

  • Bock, V. W., 1963. Diatomeen extrem trockener Standorte. Nova Hedwigia 5: 199–254.

    Google Scholar 

  • Brown, R. M., D. M. Larson & H. C. Bold, 1964. Airborne algae. Their abundance and heterogeneity. Science 143: 583–585.

    Google Scholar 

  • Burckle, L. H., R. I. Gayley, M. Ram & J. R. Petit, 1988. Diatoms in Antarctic ice cores: some implications for the glacial history of Antarctica. Geology 16: 326–329.

    Google Scholar 

  • Canfield, D. E. & W. J. Green, 1985. The cycling of nutrients in a closed-basin Antarctic lake: Lake Vanda. Biogeochemistry 1: 233–256.

    Google Scholar 

  • Cathey, D. D., B. C. Parker, G. M. Simmons Jr., W. H. Yongue Jr. & M. R. Van Brunt, 1981. The microfauna of algal mats and artificial substrates in Southern Victorialand lakes of Antarctica. Hydrobiologia 85: 3–15.

    Google Scholar 

  • Chinn, T. J., 1993. Physical hydrology of the dry valley lakes. In W. J. Green & E. I. Friedmann (eds), Physical and Biogeochemical Processes in Antarctic Lakes. Antarctic Research Series, American Geophysical Union, Washington, D.C.: 1–52.

    Google Scholar 

  • DeMaster, D. J., 1981. The supply and accumulation of silica in the marine environment. Geoch. Cosmoch. Acta 45: 1715–1732.

    Google Scholar 

  • Denton, G. H., J. G. Bockheim, S. C. Wilson & M. Stuvier, 1989. Late Wisconsin and early Holocene glacial history, Inner Ross Embayment, Antarctica. Quat. Res. 31: 151–182.

    Google Scholar 

  • Doran, P. T., R. A. Wharton Jr. & W. B. Lyons, 1994. Paleolimnology of the McMurdo Dry Valleys, Antarctica. J. Paleolimnol. 10: 85–114.

    Google Scholar 

  • Doran, P. T., 1996. Paleolimnology of Perennially Ice-Covered Antarctic Oasis Lakes. Ph.D. Dissertation, University of Nevada, Reno. 222 pp.

    Google Scholar 

  • Fritz, S. C., S. Juggins & R. W. Battarbee, 1993. Diatom assemblages and ionic characterization of lakes of the Northern Great Plains, North America: A tool for reconstructing past salinity and climate fluctuations. Can. J. Fish. aquat. Sci. 50: 1844–1856.

    Google Scholar 

  • Gasse, F., 1987. Diatoms for reconstructing palaeoenvironments and paleaohydrology in tropical and semi-arid zones. Example of some lakes from Niger since 12 000 BP. Hydrobiologia 154: 127–163.

    Google Scholar 

  • Green, W. J., T. J. Gardner, T. G. Ferdelman, M. P. Angle, L. C. Varner & P. Nixon, 1989. Geochemical processes in the Lake Fryxell Basin (Victorialand, Antarctica). Hydrobiologia 28: 543–552.

    Google Scholar 

  • Håkansson, H. & T. Nihlen, 1990. Diatoms of eolian deposits in the Mediterranean. Arch. Protistenk. 138: 313–322.

    Google Scholar 

  • Johansen, J. R., S. R. Rushforth, R. Orbendorfer, N. Fungladda & J. A. Grimes, 1983. The algal flora of selected wet walls in Zion National Park, Utah, USA. Nova Hedwigia 38: 765–808.

    Google Scholar 

  • Jones, V. J., 1993. The use of diatoms in lake sediments to investigate environmental history in theMaritimeAntarctic: an example from Sombre Lake, Signey Island. Antarct. Sci. Spec. Top. 91- 95.

  • Jones, V. J., S. Juggins & J. C. Ellis-Evans, 1993. The relationship between water chemistry and surface sediment diatom assemblages in maritime Antarctic lakes. Antarct. Sci. 5: 339–348.

    Google Scholar 

  • Kawecka, B. & M. Olech, 1993. Diatom communities in the Vanishing and Ornithologist Creek, King George Island, South Shetlands, Antarctica. Hydrobiologia 269/270: 327–333.

    Google Scholar 

  • Kellogg, D. E., M. Stuvier, T. M. Kellogg & G. H. Denton, 1980. Non-marine diatoms from late Wisconsin perched deltas in Taylor Valley, Antarctica. Palaeogeogr. Palaeoclim. Palaeoecol. 30: 157–189.

    Google Scholar 

  • Kellogg, D. E. & T. B. Kellogg, 1996. Diatoms in South Pole ice: implications for eolian contamination of Sirius Group deposits. Geology 24: 115–118.

    Google Scholar 

  • Keys, J. R., 1980. Air temperature, wind, precipitation and atmospheric humidity in the McMurdo region. Antarct. Data Ser. 9, Victoria Univ. Wellington, New Zealand. 52 pp.

    Google Scholar 

  • Kingston, J. C., R. L. Lowe, E. F. Stoermer & T. B. Ladewski, 1983. Spatial and temporal distribution of benthic diatoms in northern Lake Michigan. Ecology 64: 1566–1580.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. 1. Teil Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süß wasserflora von Mitteleuropa. Fisher-Verlag, Jena. 876 pp.

    Google Scholar 

  • Lawrence, M. J. F. & C. H. Hendy, 1989. Carbonate deposition and Ross Sea Ice advance, Fryxell basin, Taylor Valley, Antarctica. New Zealand Journal of Geology and Geophysics 32: 267–277.

    Google Scholar 

  • Lichti-Federovich, S., 1984. Investigation of diatoms found in surface snow from the Sydkap ice cap, Ellesmere Island, Northwest Territories. In Current Research, Part A, Geological Survey of Canada, 84–1A: 287–301.

    Google Scholar 

  • Lizotte, M. P. & J. C. Priscu, 1992. Spectral irradiance and biooptical properties in perennially ice-covered lakes of the Dry Valleys (McMurdo Sound, Antarctica). In D. H. Elliot (ed.), Contributions to Antarctic Research III, Antarctic Research Series. American Geophysical Union, Washington, D.C.: 1–14.

    Google Scholar 

  • Lyons, W. B., C. J. Bowser, R. A. Wharton Jr. & D. M. McKnight, 1992. Stable isotope geochemistry of Lake Fryxell and Lake Hoare, McMurdo Dry Valleys, Antarctica. EOS 73: 161.

    Google Scholar 

  • Matsumoto, G. I., 1993. Geochemical features of the McMurdo Dry Valley Lakes, Antarctica. In W. J. Green & E. I. Friedmann (eds), Physical and Biogeochemical Processes in Antarctic Lakes. Antarctic Research Series, American Geophysical Union, Washington, D.C.: 95–118.

    Google Scholar 

  • McKnight, D. M., G. R. Aiken, E. D. Andrews, E. C. Bowles & R. A. Harnish, 1993. Dissolved organic material in dry valley lakes: a comparison of Lake Fryxell, Lake Hoare, and Lake Vanda. In W. J. Green & E. I. Friedmann (eds), Physical and Biogeochemical Processes in Antarctic Lakes. Antarctic Research Series, American Geophysical Union, Washington, D.C.: 119–134.

    Google Scholar 

  • Nakao, K., T. Torii & K. Tanizawa, 1979. Paleohydrology of Lake Vanda in Wright Valley, Antarctica, inferred from granulometric analysis of DVDP 14 Core. In T. Nagata (ed.), Proceedings of the Seminar III on Dry Valley Drilling Project, 1978. Memoirs of the National Institute of Polar Research, Tokyo. Special Issue, 13: 73–83.

    Google Scholar 

  • Oppenheim, D. R. & J. C. Ellis-Evans, 1989. Depth-related changes in benthic diatom assemblages of a maritime antarctic lake. Polar Biol. 9: 525–532.

    Google Scholar 

  • Oppenheim, D. R, 1990. A preliminary study of benthic diatoms in contrasting lake environments. In: K. R. Kerry & G. Hempel (eds), Antarctic Ecosystems. Ecological Change and Conservation. Springer-Verlag, Berlin: 91–99.

    Google Scholar 

  • Oppenheim, D. R. & R. Greenwood, 1990. Epiphytic diatoms in two freshwater maritime Antarctic lakes. Freshwat. Biol. 24: 303–314.

    Google Scholar 

  • Parker, B. C., G. M. Simmons Jr., K. G. Seaburg, D. D. Cathey & F. C. T. Allnut, 1982. Comparative ecology of planktonic communities in seven Antarctic oasis lakes. J. Plankton Res. 4: 271–286.

    Google Scholar 

  • Petersen, J. B., 1935. Studies on the biology and taxonomy of soil algae. Reitzels Forlag, Copenhagen: 183 pp.

    Google Scholar 

  • Ragotzkie, R. A. & G. E. Likens, 1964. The heat balance of two antarctic lakes. Limnol. Oceanogr. 9: 412–425.

    Google Scholar 

  • Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge. 747 pp.

    Google Scholar 

  • Schackman, M. A., 1994. Analysis of Sediment and Sedimentary Processes in Perennially Ice-Covered Lake Hoare, Antarctica. M.S. Thesis, San Jose State University.

  • Schmidt, R., R. Mäusbacher & J. Müller, 1990. Holocene diatom flora and stratigraphy from sediment cores of two Antarctic Lakes (King George Island). J. Paleolimnol. 3: 55–74.

    Google Scholar 

  • Seaburg, K. C., B. C. Parker, G. W. Prescott & L. A. Whitford, 1979. The Algae of Southern Victorialand, Antarctica. A Taxonomic and Distributional Study. J. Cramer, Hirschberg: 170 pp.

    Google Scholar 

  • Smith, G. I.& I. Friedman, 1993. Lithology and paleoclimatic implications of lacustrine deposits around Lake Vanda and Don Juan Pond, Antarctica. In W. Green & E. I. Friedmann (eds), Physical and Biogeochemical Processes in Antarctic Lakes. Antarctic Research Series, American Geophysical Union, Washington, D.C.: 83–94.

    Google Scholar 

  • Smol, J. P., 1983. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can. J. Bot. 61: 2195–2204.

    Google Scholar 

  • Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. int. Ver. Limnol. 23: 837–844.

    Google Scholar 

  • Spaulding, S. A., D. M. McKnight, R. L. Smith & R. Dufford, 1994. Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J. Plankton Res. 16: 527–541.

    Google Scholar 

  • Squyres, S. W., D. W. Andersen, S. S. Nedell & R. W. Wharton Jr., 1991. Lake Hoare, Antarctica: sedimentation through a thick perennial ice cover. Sedimentology 38: 363–379.

    Google Scholar 

  • Stevenson, R. J. & E. F. Stoermer, 1981. Quantitative differences between benthic algal communities along a depth gradient in Lake Michigan. J. Phycol. 17: 29–36.

    Google Scholar 

  • Stoermer, E. F., M. B. Edlund, C. H. Pilskaln & C. L. Schelske, 1995. Siliceous microfossil distribution in the surficial sediments of Lake Baikal. J. Paleolimnol. 14: 69–82.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1968. A practical handbook of sea water analysis. Bull. Fish. Res. Bd. Can. 167, 311 pp.

  • Stuvier, M., G. H. Denton, T. J. Hughes & J. L. Fastook, 1981. History of the marine ice sheet in west Antarctica during the last glaciation, a working hypothesis. In G. H. Denton & T. H. Hughes (eds), The Last Great Ice Sheets. Wiley-Interscience, New York: 319–436.

    Google Scholar 

  • SYSTAT: Statistics, Version 5.2, V Edition, 1992. SYSTAT, Inc., Evanston, Illinois: 724 pp.

    Google Scholar 

  • Vincent, W., 1988. Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge: 304 pp.

    Google Scholar 

  • Wasall, A. & H. Håkansson, 1992. Diatom stratigraphy in a lake on Horseshoe Island, Antarctica: a marine-brackish-fresh water transition with comments on the systematics and ecology of the most common diatoms. Diatom Res. 7: 157–194.

    Google Scholar 

  • West, W. & G. S. West, 1911. Freshwater algae. In J. Murray (ed.), British Antarctic Expedition 1907–9. W. Heinemann, London. 1: 263–298.

    Google Scholar 

  • Wharton, R. A., Jr., C. P. McKay, G. D. Clow & D. T. Andersen, 1993. Perennial ice covers and their influence on antarctic lake ecosystems. In W. J. Green & E. I. Friedmann (eds), Physical and Biogeochemical Processes in Lakes, Antarctic Research Series, American Geophysical Union, Washington, D.C.: 53–70.

    Google Scholar 

  • Wharton, R. A., Jr., C. P. McKay, G. D. Clow, D. T. Andersen, G. M. Simmons Jr. & F. G. Love, 1992. Changes in ice cover thickness and lake level of Lake Hoare, Antarctica: implications for local climate change. J. Geophys. Res. 97: 3505–3513.

    Google Scholar 

  • Wharton, R. A., Jr., B. C. Parker & G. M. Simmons Jr., 1983. Distribution, species composition, and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22: 355–365.

    Google Scholar 

  • Wharton, R. A., C. P. MacKay, G. M. Simmons, Jr. & B. C. Parker, 1986. Oxygen budget of a perennially ice-covered Antarctic lake. Limnol. Oceanogr. 31: 437–443.

    Google Scholar 

  • Wharton, R. A., Jr., G. M. Simmons Jr. & C. P. McKay, 1989. Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology, and sedimentation. Hydrobiologia 172: 305–320.

    Google Scholar 

  • Wilson, A. T., 1964. Evidence from chemical diffusion of a climatic change in the McMurdo dry valleys 1200 years ago. Nature 201: 176–177.

    Google Scholar 

  • Wilson, A. T., 1965. Escape of algae from frozen lakes and ponds. Ecology 46: 376.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spaulding, S.A., McKnight, D.M., Stoermer, E.F. et al. Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. Journal of Paleolimnology 17, 403–420 (1997). https://doi.org/10.1023/A:1007931329881

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007931329881

Navigation