Journal of Intelligent and Robotic Systems

, Volume 20, Issue 2–4, pp 295–317 | Cite as

Robust Practical Point Stabilization of a Nonholonomic Mobile Robot Using Neural Networks

  • Rafael Fierro
  • Frank L. Lewis
Article

Abstract

A control structure that makes possible the integration of a kinematiccontroller and a neural network (NN) computed-torque controller fornonholonomic mobile robots is presented. A combined kinematic/torque controllaw is developed and stability is guaranteed by Lyapunov theory. Thiscontrol algorithm is applied to the practical point stabilization problemi.e., stabilization to a small neighborhood of the origin. The NN controllercan deal with unmodeled bounded disturbances and/or unstructured unmodeleddynamics in the vehicle. On-line NN weight tuning algorithms that do notrequire off-line learning yet guarantee small tracking errors and boundedcontrol signals are utilized.

nonholonomic systems mobile robots neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barraquand, J. and Latombe, J.-C.: 1991, Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles, in: Proc. IEEE Int. Conf. Robot. Autom., Sacramento, CA, 1991, pp. 2328–2335.Google Scholar
  2. Berns, K., Dillman, R., and Hofstetter, R.: 1991, An application of a backpropagation network for the control of a tracking behavior, in: Proc. IEEE Int. Conf. on Robotics and Automation, Vol. 3, pp. 2426–2431, Sacramento, CA, April 1991.Google Scholar
  3. Bloch, A. M., Reyhanoglu, M., and McClamroch, N. H.: 1992, Control and stabilization of nonholonomic dynamic systems, IEEE Trans. Autom. Control 37(11), 1746–1757.Google Scholar
  4. Brockett, R. W.: 1983, Asymptotic stability and feedback stabilization, in: R. W. Brockett, R. S. Millman, and H. J. Sussmann (eds.), Differential Geometric Control Theory, Boston, Birkhäuser, pp. 181–191.Google Scholar
  5. Campion, G., d’Andrréa-Novel, B., and Bastin, G.: 1991, Controllability and state feedback stabilizability of nonholonomic mechanical systems, in: C. Canudas de Wit (ed.), Lecture Notes in Control and Information Science, Springer-Verlag, Berlin, pp. 106–124.Google Scholar
  6. Canudas de Wit, C., Khennouf, H., Samson, C., and Sordalen, O. J.: 1993, Nonlinear control design for mobile robots, in: Y. F. Zheng (ed.), Recent Trends in Mobile Robots, World Scientific, Singapore, pp. 121–156.Google Scholar
  7. Canudas de Wit, C. and Khennouf, H.: 1995, quasi-continuous stabilizing controllers for nonholonomic systems: design and robustness considerations, in: Proc. Eur. Control Conf., Rome, 1995, pp. 2630–2635.Google Scholar
  8. Chen, F. C. and Liu, C. C.: 1994, Adaptively controlling nonlinear continuous-time systems using multilayer neural network, IEEE Trans. Autom. Control 39(6), 1306–1310.Google Scholar
  9. Cybenko, G.: 1989, Approximation by superposition of a sigmoidal function, Math. Controls Sig. Syst. 2(4), pp. 303–314.Google Scholar
  10. Fierro, R. and Lewis, F. L.: 1995, Control of nonholonomic mobile robot: Backstepping kinematics into dynamics, in: Proc. IEEE Conf. Dec. Control, New Orleans, LA, 1995, pp. 3805–3810.Google Scholar
  11. Hornik, K., Stinchcombe, M., and White, H.: 1989, Multilayer feedforward networks are universal approximators, Neural Network 2, 359–366.Google Scholar
  12. Jiang, Z. P. and Pomet, J.-B.: 1994, Combining backstepping and time-varying techniques for a new set of adaptive controllers, in: Proc. IEEE Conf. Dec. Control, Lake Buena Vista, FL, 1994, pp. 2207–2212.Google Scholar
  13. Kanayama, Y., Kimura, Y., Miyazaki, F., and Noguchi, T.: 1990, A stable tracking control method for an autonomous mobile robot, in: Proc. IEEE Int. Conf. Robot. Autom., 1990, pp. 384–389.Google Scholar
  14. Kolmanovsky, I. and McClamroch, N. H.: 1995, Developments in nonholonomic control problems, in: IEEE Control Systems, Dec. 1995, pp. 20–36.Google Scholar
  15. Lewis, F. L., Abdallah, C. T., and Dawson, D. M.: 1993, Control of Robot Manipulators, MacMillan, New York.Google Scholar
  16. Lewis, F. L.: 1996, Neural network control of robot manipulators, in: 1996 June, IEEE Expert, pp. 64–75.Google Scholar
  17. Lewis, F. L., Yesildirek, A., and Liu, K.: 1996, Multi-layer neural-net roobot controller with guaranteed tracking performance, IEEE Trans. Neural Netw. 7(2), 1–20.Google Scholar
  18. M’Closkey, R. T. and Murray, R. M.: 1994, Extending exponential stabilizers for nonholonomic systems from kinematic controlllers to dynamic controllers, in: Proc. IFAC Symp. Robot Control, Capri, Italy, 1994, pp. 211–216.Google Scholar
  19. Murray, R. M., Li, Z., and Sastry, S. S.: 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, FL.Google Scholar
  20. Nagata, S., Sekiguchi, M., and Asakawa, K.: 1990, Mobile robot control by a structured hierarchical neural network, IEEE Control Systems, 69–76.Google Scholar
  21. Narendra, K. S.: 1991, Adaptive control using neural networks, in: W. T. Miller, R. S. Sutton, and P. W. Werbos (eds), Neural Networks for Control, MIT Press, Cambridge, pp. 115–142.Google Scholar
  22. Oelen, W., Berghuis, H., Nijmeijer, H., and Canudas de Wit, C.: 1995, Hybrid stabilizing control on a real mobile robot, IEEE Robot. automat. Magazine, 16–23.Google Scholar
  23. Polycarpou, M. M. and Ioannu, P. O.: 1992, Neural networks as on-line approximators of nonlinear systems, in: Proc. IEEE Conf. Dec. Control, Tucson, AZ, 1992, pp. 7–12.Google Scholar
  24. Rovithakis, G. A. and Christodoulou, M. A.: 1994, Adaptive control of unknown plants using dynamical neural networks, IEEE Trans. Syst. Man Cyber. 24(3), 400–412.Google Scholar
  25. Sadegh, N.: 1993, A perceptron network for functional identification and control of nonlinear systems, IEEE Trans. Neural Netw. 4(6), 982–988.Google Scholar
  26. Samson, C.: 1991, Velocity and torque feedback control of a nonholonomic cart, in: C. Canudas de Wit (ed.), Lecture Notes in Control and Information Science, Springer-Verlag, Berlin, pp. 125–151.Google Scholar
  27. Sarkar, N. Yun, X., and Kumar, V.: 1994, Control of mechanical systems with rolling constraints: Application to dynamic control of mobile robots, Int. J. Robot. Res. 13(1), 55–69.Google Scholar
  28. Werbos, P. J.: 1989, Backpropagation: past and future, in: Proc. 1988 Int. Conf. Neural Netw., Vol. 1, 1989, pp. 1343–1353.Google Scholar
  29. Yamamoto, Y. and Yun, X.: 1993, Coordinating locomotion and manipulation of a mobile manipulator, in: Y. F. Zheng (ed.), Recent Trends in Mobile Robots, World Scientific, Singapore, pp. 157–181.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Rafael Fierro
    • 1
  • Frank L. Lewis
    • 1
  1. 1.Automation and Robotics Research InstituteThe University of Texas at ArlingtonTexasU.S.A.

Personalised recommendations