Skip to main content
Log in

Chromosome Reconstruction from Physical Maps Using a Cluster of Workstations

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is shown to be isomorphic to the classical NP-complete Optimal Linear Arrangement problem. Parallel algorithms for simulated annealing and microcanonical annealing based on Markov chain decomposition are proposed and applied to the problem of chromosome reconstruction via clone ordering. These algorithms are implemented on a cluster of UNIX workstations using the Parallel Virtual Machine (PVM) system. PVM is a software system that permits a heterogeneous collection of networked computers to be viewed by a user's program as a single monolithic parallel computing resource. The parallel algorithms are implemented and tested on clonal data derived from Chromosome IV of the fungus Asperigillus nidulans Perturbation methods and problem-specific annealing heuristics for the parallel simulated annealing and parallel microcanonical annealing algorithms are proposed and described. Convergence, speedup and scalability characteristics of the various parallel algorithms are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H.L. Aarts, F.M.J. de Bont, J.H.A. Habers and P.J.M. van Laarhoven, A Parallel Statistical Cooling Algorithm, Lecture Notes in Computer Science: Proc. 3rd Annual Symp. Theoretical Aspects of Computer Science, Vol. 210, pp. 87–97, Springer–Verlag Inc., Berlin, Germany, 1986.

    Google Scholar 

  2. E.H.L. Aarts and K. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing, Wiley, New York, 1989.

    MATH  Google Scholar 

  3. R. Azencott, (Ed.), Simulated Annealing: Parallelization Techniques, JohnWiley Inc., New York, NY, 1992.

    MATH  Google Scholar 

  4. P. Banerjee, M. H. Jones and J. S. Sargent, Parallel Simulated Annealing Algorithms for Cell Placement on the Hypercube Multiprocessor, IEEE Trans. Parallel and Distributed Systems, Vol. 1, pp. 91–106, Jan. 1990.

    Article  MATH  Google Scholar 

  5. B. Bellane–Chantelot, B. LaCroix, P. Ougen, A. Billault, S. Beaufils, S. Bertrand, I. Georges, F. Gilbert, I. Gros, G. Lucotte, L. Susini, J.J. Codani, P. Gernouin, V.G. Pook, J. Lu-Kuo, T. Ried, D. Ward, I. Chumakov, D. Le Paslier, E. Barilott, and D. Cohen, Mapping the Whole Human Genome by Fingerprinting Yeast Artificial Chromosomes, Cell, Vol. 70, pp. 1059–1068, 1992.

    Article  Google Scholar 

  6. W. Bender, M. Akam, F. Karch, P.A. Beachy, M. Peiffer, P. Spierer, E.B. Lewis, and D.S. Hogness, Molecular Genetics of the Bithorax Complex in Drosophila Melanogaster. Science, Vol. 221, pp. 23–29, 1983.

    Google Scholar 

  7. E. Bonomy and J.L. Lutton, N-City Traveling Salesman Problem and Metropolis Algorithm, SIAM Rev. Vol. 26 No. 84 pp. 551–568, 1984.

    Article  MathSciNet  Google Scholar 

  8. H. Brody, J. Griffith, A.J. Cuticchia, J. Arnold, and W.E. Timberlake, Chromosome-specific Recombinant Libraries from the Fungus Aspergillus nidulans, Nucleic Acids Res. Vol. 19, pp. 3105–3190, 1991.

    Google Scholar 

  9. A. Casotto, F. Romeo and A. Sangiovanni–Vincentelli, A Parallel Simulated Annealing Algorithm for the Placement of Macro Cells, IEEE Trans. Computer-Aided Design, pp. 838–847, Sept. 1987.

  10. D. Cohen, I. Chumakov, and J. Weissenbach, A First-Generation Physical Map of the Human Genome, Nature, Vol. 366, 698–701, 1993.

    Article  Google Scholar 

  11. F.S. Collins, M.L. Drumm, J.L. Cole, W.K. Lockwood, G.F. Vande Woude and M.C. Ianuzzi, Construction of a General Human Chromosome Jumping Library with Application to Cystic Fibrosis, Science, Vol. 235, pp. 1046–1049, 1987.

    Google Scholar 

  12. M. Creutz, Microcanonical Monte Carlo Simulation, Physics ReviewLetters,Vol. 50, No. 19, pp. 1411–1414, May 1983.

    Article  MathSciNet  Google Scholar 

  13. A. J. Cuticchia, J. Arnold and W. E. Timberlake, The Use of Simulated Annealing in Chromosome Reconstruction Experiments Based on Binary Scoring, Genetics, Vol. 132, pp. 591–601, Oct. 1992.

    Google Scholar 

  14. A.J. Cuticchia, J. Arnold, and W.E. Timberlake, ODS: Ordering DNA Sequences -- A Physical Mapping Algorithm Based on Simulated Annealing, CABIOS, Vol. 9, No. 2, pp. 215–219, 1993.

    Google Scholar 

  15. E. Felten, S. Karlin and S.W. Otto, The Traveling Salesman Problem on a Hypercubic MIMD Computer, Proc. IEEE International Conference Parallel Processing, pp. 6–10, 1985.

  16. M.S. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP–Completeness, W.H. Freeman, New York, NY, 1979.

    MATH  Google Scholar 

  17. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sunderam, PVM Parallel Virtual Machine --A User's Guide and Tutorial for Networked Parallel Computing, MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  18. S. Geman and D. Geman, Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 6, pp. 721–741, 1984.

    MATH  Google Scholar 

  19. . D.R. Greening, Parallel Simulated Annealing Techniques, Physica D, Vol. 42, pp. 293–306, 1990.

    Article  Google Scholar 

  20. R. Jayaraman and R. Rutenbar, Floor Planning by Annealing on a Hypercube Multiprocessor, Proc. IEEE Intl. Conf. Computer Aided Design, pp. 346–349, Nov. 1987.

  21. Y. Kim and M. Kim, A Stepwise Overlapped Parallel Annealing Algorithm on a Message Passing Multiprocessor System, Concurrency: Practice and Experience, Vol. 2, No. 2, pp. 123–148, 1990.

    Google Scholar 

  22. S. Kirkpatrick, C. Gelatt Jr. and M. Vecchi, Optimization by Simulated Annealing, Science, Vol. 220, No. 4598, pp. 498–516, May 1983.

    MathSciNet  Google Scholar 

  23. P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications, D. Reidel Pub. Co., Dordrecht, Holland, 1987.

    MATH  Google Scholar 

  24. E.S. Lander, and P. Green, Construction of multi-Locus Genetic Linkage Maps in Humans. Proc. Natl. Acad. Sci., Vol. 84, pp. 2363–2367, 1987.

    Article  Google Scholar 

  25. F.H. Lee, Parallel Simulated Annealing on a Message-Passing Multicomputer, Ph.D. dissertation, Dept. of Electrical Engineering, Utah State University, Logan, UT, 1995.

    Google Scholar 

  26. S. Lin and B. Kernighan, An Effective Heuristic for the Traveling Salesman Problem, Operations Research, Vol. 21, pp. 498–516, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  27. E. Maier, J.D. Hoheisel, L. McCarthy, R. Mott, A.V. Grigoriev, A.P. Monaco, Z. Larin, and H. Lehrach, Yeast Artificial Chromosome Clones Completely Spanning the Genome of Schizosaccharonyces Pombe, Nature Genetics, Vol. 1, pp. 273–277, 1992.

    Article  Google Scholar 

  28. E.M. Meyerowitz, Arabidopsis, a Useful Weed, Cell, Vol. 47, pp. 845–850, 1989.

    Google Scholar 

  29. S. Nahar, S. Sahni and E. Shragowitz, Simulated Annealing and Combinatorial Optimization, International Journal of Computer Aided VLSI Design, Vol. 1, pp. 1–23, 1989.

    Google Scholar 

  30. C.L. Smith and R.D. Kolodner, Mapping of Escherichia coli Chromosomal Tn5 and F Insertions by Pulsed Field Gel Electrophoresis, Genetics, Vol. 119, pp. 227–236, 1988.

    Google Scholar 

  31. A.H. Sturtevant, The linear arrangement of six sex-linked factors in Drosophila as shown by their mode of association, Jour. Exp. Zool., Vol. 14, pp. 43–49, 1913.

    Article  Google Scholar 

  32. V. Sunderam, PVM: A Framework for Parallel Distributed Computing. Concurrency: Practice and Experience. Vol. 2, No. 2, pp. 315–339, 1990.

    Google Scholar 

  33. W. E. Timberlake, Molecular Genetics of Aspergillus Development, Ann. Rev. Genetics, Vol. 24, pp. 5–36, 1990.

    Article  Google Scholar 

  34. Y. Wang, R.A. Prade, J. Griffith, W.E. Timberlake, and J. Arnold, A Fast Random Cost Algorithm for Physical Mapping. Proc. Natl. Acad. Sci. Vol. 91, pp. 11094–11098, 1994.

    Article  Google Scholar 

  35. E.E. Witte, R.D. Chamberlain and M.A. Franklin, Parallel Simulated Annealing using Speculative Computation, IEEE Trans. Parallel and Distributed Systems, Vol. 2, No. 4, pp. 483–494, Oct. 1991.

    Article  Google Scholar 

  36. C.P. Wong and R.D. Fiebrich, Simulated Annealing-based Circuit Placement on the Connection Machine System, Proc. Intl. Conf. Computer Design, pp. 78–82, Oct. 1987.

  37. M. Xiong, H.J. Chen, R.A. Prade, Y. Wang, J. Griffith, W.E. Timberlake, and J. Arnold, On the Consistency of a Physical Mapping Method to Reconstruct a Chromosome In Vitro, Genetics, Vol. 142, No. 1, pp. 267–284, 1996.

    Google Scholar 

  38. P. Zhang, E.A. Schon, S.G. Fischer, E. Cayanis, J. Weiss, S. Kistler, and P.E. Bourne, An Algorithm Based on Graph Theory for the Assembly of Contigs in Physical Mapping of DNA, CABIOS, Vol. 10, pp. 309–317, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhandarkar, S., Machaka, S. Chromosome Reconstruction from Physical Maps Using a Cluster of Workstations. The Journal of Supercomputing 11, 61–86 (1997). https://doi.org/10.1023/A:1007913429509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007913429509

Navigation