Skip to main content
Log in

QXP: Powerful, rapid computer algorithms for structure-based drug design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

New methods for docking, template fitting and building pseudo-receptors are described. Full conformational searches are carried out for flexible cyclic and acyclic molecules. QXP (quick explore) search algorithms are derived from the method of Monte Carlo perturbation with energy minimization in Cartesian space. An additional fast search step is introduced between the initial perturbation and energy minimization. The fast search produces approximate low-energy structures, which are likely to minimize to a low energy. For template fitting, QXP uses a superposition force field which automatically assigns short-range attractive forces to similar atoms in different molecules. The docking algorithms were evaluated using X-ray data for 12 protein–ligand complexes. The ligands had up to 24 rotatable bonds and ranged from highly polar to mostly nonpolar. Docking searches of the randomly disordered ligands gave rms differences between the lowest energy docked structure and the energy-minimized X-ray structure, of less than 0.76 Å for 10 of the ligands. For all the ligands, the rms difference between the energy-minimized X-ray structure and the closest docked structure was less than 0.4 Å, when parts of one of the molecules which are in the solvent were excluded from the rms calculation. Template fitting was tested using four ACE inhibitors. Three ACE templates have been previously published. A single run using QXP generated a series of templates which contained examples of each of the three. A pseudo-receptor, complementary to an ACE template, was built out of small molecules, such as pyrrole, cyclopentanone and propane. When individually energy minimized in the pseudo-receptor, each of the four ACE inhibitors moved with an rms of less than 0.25 Å. After random perturbation, the inhibitors were docked into the pseudo-receptor. Each lowest energy docked structure matched the energy-minimized geometry with an rms of less than 0.08 Å. Thus, the pseudo-receptor shows steric and chemical complementarity to all four molecules. The QXP program is reliable, easy to use and sufficiently rapid for routine application in structure-based drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Erickson, J.W. and Fesik, S.W., In Venuti, M.C. (Ed.) Annual Reports of Medicinal Chemistry, Academic Press, New York, NY, U.S.A., 1992, p. 271.

    Google Scholar 

  2. Greer, J., Erickson, J.W., Baldwin, J.J. and Varney, J., J. Med. Chem., 37 (1994) 1035.

    Google Scholar 

  3. Bohacek, R.S., McMartin, C. and Guida, W.C., Rev. Med. Chem., in press.

  4. Kearsley, S.K. and Smith, G.M., Tetrahedron Comput. Methodol., 3 (1990) 615.

    Google Scholar 

  5. Klebe, G., Mietzner, T. and Weber, F., J. Comput.-Aided Mol. Design, 8 (1994) 751.

    Google Scholar 

  6. McMartin, C. and Bohacek, R.S., J. Comput.-Aided Mol. Design, 9 (1995) 237.

    Google Scholar 

  7. Guida, W.C., Bohacek, R.S. and Erion, M.D., J. Comput. Chem., 13 (1992) 214.

    Google Scholar 

  8. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Algona, G., Profeta, S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  9. Mohamadi, F., Richards, N.G., Guida, W.C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrikson, T. and Still, C., J. Comput. Chem., 11 (1990) 440.

    Google Scholar 

  10. Polak, E. and Ribiere, G., Revue Française Inf. Rech. Oper., 16-R1 (1969) 35.

    Google Scholar 

  11. Beeman, D., J. Chem., 20 (1976) 130.

    Google Scholar 

  12. Metropolis, N., Rosenbluth, A., Rosaenbluth, M., Teller, A. and Teller, E., J. Chem. Phys., 21 (1953) 1087.

    Google Scholar 

  13. Abol, E.E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. and Weng, J., In Allen, F.H., Bergerhoff, G. and Sievers, R. (Eds.) Crystallographic Data-bases - Information Content, Software Systems, Scientific Applications, Data Commission of the International Union of Crystallography, Bonn/Cambridge/Chester, 1987, pp. 107–132.

    Google Scholar 

  14. Roderick, S.L., Fournie-Zaluski, M.C., Roques, B.P. and Matthews, B.W., Biochemistry, 28 (1989) 1493.

    Google Scholar 

  15. Monzingo, A.F. and Matthews, B.W., Biochemistry, 21 (1982) 3390.

    Google Scholar 

  16. Bone, R., Vacca, J.P., Anderson, P.S. and Holloway, M.K., J. Am. Chem. Soc., 113 (1991) 9382.

    Google Scholar 

  17. Hosur, M.V., Bhat, T.N., Kemp, D., Baldwin, E.T., Liu, B., Gulnik, S., Wideburg, N.E., Norbeck, D.W., Appelt, K. and Erickson, J.W., J. Am. Chem. Soc., 116 (1994) 847.

    Google Scholar 

  18. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    Google Scholar 

  19. Kim, H. and Lipscomb, W.N., Biochemistry, 30 (1991) 8171.

    Google Scholar 

  20. Cheetam, J.C., Artymuik, P.J. and Phillips, D.C., J. Mol. Biol., 224 (1993) 613.

    Google Scholar 

  21. Wilson, D.K., Rudolph, F.B. and Quicho, F.A., Science, 252 (1991) 1278.

    Google Scholar 

  22. Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S.R. and Hofsteenge, J., EMBO J., 8 (1989) 3467.

    Google Scholar 

  23. Cowan, S.W., Newcomer, M.E. and Jones, T.A., Proteins, 8 (1990) 44.

    Google Scholar 

  24. Spurlino, J.C., Smallwood, A.M., Carlton, D.D., Banks, T.M., Vavra, K.J., Johnson, J.S., Cook, E.R., Falvo, G.J., Wahl, R.C. and Pulvino, T.A., Proteins, 19 (1994) 98.

    Google Scholar 

  25. Weber, P.C., Ohlendorf, D.H., Wendoloski, J.J. and Salemme, F.R., Science, 85 (1989) 243.

    Google Scholar 

  26. Teeter, M.M., Proc. Natl. Acad. Sci. USA, 81 (1984) 6104.

    Google Scholar 

  27. Sacchettini, J.C., Gordon, J.I. and Banszak, L.J., J. Mol. Biol., 208 (1989) 327.

    Google Scholar 

  28. Wlodawer, A., Walter, J., Huber, L. and Sjolin, L., J. Mol. Biol., 180 (1984) 301.

    Google Scholar 

  29. Whitlow, M. and Teeter, M.M., J. Am. Chem. Soc., 108 (1986) 7163.

    Google Scholar 

  30. Cushman, D.W., Cheung, H.S., Sabo, E.F. and Ondetti, M.A., Biochemistry, 16 (1977) 5484.

    Google Scholar 

  31. Hassall, C.H., Kroehn, A., Moody, C.J. and Thomas, W.A., J. Chem. Soc. Perkin Trans. I, (1984) 155.

    Google Scholar 

  32. Weller, H.N., Gordon, E.M., Rom, M.B. and Plusces, J., Biochem. Biophys. Res. Commun., 125 (1984) 82.

    Google Scholar 

  33. Watthey, J.W.H., Stanton, J.L., Desai, M., Babiarz, J.E. and Finn, B.M., J. Med. Chem., 28 (1985) 1511. ACE activity was measured with the substrate hippuryl-His-Leu using the procedure described by Cushman, D.W. and Cheung, H.W., Biochem. Pharmacol., 20 (1971) 1637.

    Google Scholar 

  34. Andrews, P.R., Carson, J.M., Caselli, A., Spark, M.J. and Woods, R., J. Med. Chem., 28 (1985) 393.

    Google Scholar 

  35. Mayer, D., Naylor, C.B., Motoc, I. and Marshall, G.R., J. Comput.-Aided Mol. Design, 1 (1987) 3.

    Google Scholar 

  36. Hausin, R.J. and Codding, P.W., J. Med. Chem., 33 (1990) 1940.

    Google Scholar 

  37. MacroModel v. 2.5 was obtained from Professor W. Clark Still, Columbia University, New York, NY, U.S.A.

  38. Bohacek, R.S.B. and McMartin, C., J. Am. Chem. Soc., 116 (1994) 5560.

    Google Scholar 

  39. Bohacek, R.S., De Lombaert, S., McMartin, C., Priestle, J. and Gruetter, M., J. Am. Chem. Soc., 118 (1996) 8231.

    Google Scholar 

  40. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  41. Goodsell, D.S. and Olsen, A.J., Proteins Struct. Funct. Genet., 8 (1990) 195.

    Google Scholar 

  42. Sobolev, V., Wade, R.C., Vriend, G. and Edelman, M., Proteins, 25 (1996) 120.

    Google Scholar 

  43. Mitzutani, M.Y., Tomioka, N. and Itai, A., J. Mol. Biol., 235 (1994) 318.

    Google Scholar 

  44. Hart, T.N. and Read, R.J., Proteins, 13 (1992) 206.

    Google Scholar 

  45. Welch, W., Ruppert, J. and Jain, A.N., Chem. Biol., 3 (1996) 449.

    Google Scholar 

  46. Kuntz, I.D., Meng, E.C. and Shoichet, B.K., Acc. Chem. Res., 27 (1994) 117.

    Google Scholar 

  47. Ksander, G.M., De Jesus, R., Yuan, A., Ghai, R.D., Trapani, A., McMartin, C. and Bohacek, R., J. Med. Chem., 40 (1997) 495.

    Google Scholar 

  48. Ksander, G.M., De Jesus, R., Yuan, A., Ghai, R.D., McMartin, C. and Bohacek, R., J. Med. Chem., 40 (1997) 506.

    Google Scholar 

  49. FLO96, Morristownship, NJ, U.S.A., tel.: 201 455 1229, e-mail: cmcma @ix.netcom.com.

  50. Bohacek, R.S. and McMartin, C., J. Med. Chem., 35 (1992) 1671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mcmartin, C., Bohacek, R.S. QXP: Powerful, rapid computer algorithms for structure-based drug design. J Comput Aided Mol Des 11, 333–344 (1997). https://doi.org/10.1023/A:1007907728892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007907728892

Navigation