Skip to main content
Log in

Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We used multivariate statistical techniques to analyse the distributions of surface sediment chironomid assemblages with respect to surface-water temperature, and an additional set of 27 environmental variables, in 30 freshwater lakes of northern Fennoscandia. Our study transect spans boreal coniferous forest to subarctic tundra and includes a steep temperature gradient. Canonical correspondence analysis (CCA) with forward selection and associated Monte Carlo permutation tests revealed that there were statistically significant (P<0.05) relationships between chironomid distributions and two environmental variables, namely lakewater temperature and maximum lake depth. A constrained CCA with temperature as the only predictor variable suggested that the relationship between lakewater temperature and chironomid composition was sufficiently robust for developing a weighted-averaging (WA) based quantitative inference model that will allow palaeotemperature reconstructions using subfossil chironomid remains preserved in lake sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashe, P., D. A. Murray & F. Reiss, 1987. The zoogeographical distribution of Chironomidae (Insecta: Diptera). Ann. Limnol. 23: 27–60.

    Google Scholar 

  • Atlas of Finland, 1987. Folio 131. Climate. National Board of Survey, Geographical Society of Finland. Helsinki.

  • Battarbee, R. W., 1991. Paleolimnology and climate change. In B. Frenzel (ed.), Evaluation of climate proxy data in relation to the European Holocene. Akademie der Wissenschaften und der Litteratur Mainz: 149–157.

  • Birks, H. J. B., L.M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. r. Soc., Lond. B 327: 263–278.

    Google Scholar 

  • Bradbury, J. P., 1988. A climatic-limnologic model of diatom succession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. J. Paleolimnol. 1: 115–131.

    Google Scholar 

  • Brundin, L., 1949. Chironomiden und andere Bodentiere der S¨udschwedischen Urgebirgsseen. Inst. Freshwat. Res.Drott. Rep. 32: 32–42.

    Google Scholar 

  • Cranston, P. S., D. R. Oliver & O. A. Sæther, 1983. The larvae of Orthocladiinae (Diptera: Chironomidae) of the Holarctic region. In T. Wiederholm (ed.), Chironomidae of the Holarctic region. Keys and diagnoses. Ent. Scand. Suppl. 19. Lund, Sweden: 149–291.

  • Dixit, S. S., A. S. Dixit & J. P. Smol, 1989. Relationship between chrysophyte assemblages and environmental variables in seventytwo Sudbury lakes as examined by canonical correspondence analysis (CCA). Can. J. Fish. aquat. Sci. 46: 1667–1676.

    Google Scholar 

  • Dixit, S. S., B. F. Cumming, H. J. B. Birks, J. P. Smol, J. C. Kingston, A. J. Uutala, D. F. Charles & K. E. Camburn, 1993. Diatom assemblages from Adirondack lakes (New York,, USA) and the development of inference models for retrospective environmental assessment. J. Paleolimnol. 8: 27–47.

    Google Scholar 

  • Dixon, P. M., 1993. The bootstrap and the jackknife: Describing the precision of ecological indices. In S. M. Scheiner & J. Gurevitch (eds), Design and Analysis of Ecological Experiments. Chapman & Hall, New York: 290–318.

    Google Scholar 

  • Douglas, M. S. V., J. P. Smol & W. Blake Jr., 1994. Marked post-18th century environmental change in high-arctic ecosystems. Science 226: 416–419.

    Google Scholar 

  • Grimshaw, H. M., S. E. Allen & J. A. Parkinson, 1989. Nutrient elements. In S. E. Allen (ed.), Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Lond.: 81–159.

    Google Scholar 

  • Hann, B. J., B. G. Warner & W. F. Warwick, 1992. Aquatic invertebrates and climate change: A comment on Walker et al. (1991). Can. J. Fish. aquat. Sci. 49: 1274–1276.

    Google Scholar 

  • Hershey, A. E., 1985. Littoral chironomid communities in an arctic Alaskan lake. Holarct. Ecol. 8: 39–48.

    Google Scholar 

  • Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequenses. Ecology 54: 427–432.

    Google Scholar 

  • Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • Hoestler, S.W., 1995. Hydrological and thermal response of lakes to climate: description andmodelling. In A. Lerman, D.M. Imboden & J. R. Gat (eds), Physics and Chemistry of Lakes. Springer-Verlag, N.Y.: 63–82.

    Google Scholar 

  • Hofmann, W., 1971. Zur Taxonomie und Palökologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Arch. Hydrobiol. Beiheft 6. Ergeb. Limnol.

  • Hofmann, W., 1983. Stratigraphy of Cladocera and Chironomidae in a core from a shallow North German lake. Hydrobiologia 103: 235–239.

    Google Scholar 

  • Hofmann, W., 1986. Chironomid analysis. In B. E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons Ltd.: 715–727.

  • Hofmann, W., 1988. The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeogr. Palaeoclim. Palaeoecol. 62: 501–509.

    Google Scholar 

  • Hofmann, W., 1990. Weichselian chironomid and cladoceran assemblages from maar lakes. Hydrobiologia 214: 207–211.

    Google Scholar 

  • Johnson, R. K. & T. Wiederholm, 1989. Classification and ordination of profundal macroinvertebrate communities in nutrient poor, oligo-mesohumic lakes in relation to environmental data. Freshwat. Biol. 21: 375–386.

    Google Scholar 

  • Juggins, S. & C. J. F. ter Braak, 1992. CALIBRATE – a program for species-environment calibration by [weighted averaging] partial least squares regression. Environmental Change Research Centre, University College London.

  • Kansanen, P. H., J. Aho & L. Paasivirta, 1984. Testing the benthic lake type concept based on chironomid associations in some Finnish lakes using multivariate statistical methods. Ann. Zool. Fenn. 21: 55–76.

    Google Scholar 

  • Levesque, A. J., L. C. Cwynar & I. Walker, 1994. A multi-proxy investigation of late-glacial climate and vegetation change at Pine Ridge Pond, southwest New Brunswick, Canada. Quat. Res. 42: 316–327.

    Google Scholar 

  • MacDonald, G. M., T. W. D. Edwards, K. A. Moser, R. Pienitz & J. P. Smol, 1993. Rapid response of treeline vegetation and lakes to past climate warming. Nature 361: 243–246.

    Google Scholar 

  • Masood, E., 1995. Climate panel confirms human role in warming, fights off oil states. Nature 378: 524.

    Google Scholar 

  • Meriläinen, J. J. & J. Hynynen, 1990. Benthic invertebrates in relation to acidity in Finnish forest lakes. In P. Kauppi, P. Anttila & K. Kenttämies (eds), Acidification in Finland. Springer-Verlag, Berlin, Heidelberg: 1029–1049.

    Google Scholar 

  • Mossberg, P. & P. Nyberg, 1979. Bottom fauna of small acid forest lakes. Inst. Freshwater Res. Drottningholm Rep. 58: 77–87.

    Google Scholar 

  • Payette, S., L. Filion, A. Delwaide & C. Bégin, 1989. Reconstruction of tree-line vegetation response to long term climate change. Nature 341: 429–432.

    Google Scholar 

  • Pienitz, R. & J. P. Smol, 1993. Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269/270: 391–404.

    Google Scholar 

  • Pienitz, R., J. P. Smol & H. J. B. Birks, 1995. Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J. Paleolimnol. 13: 21–49.

    Google Scholar 

  • Psenner, R. & R. Schmidt, 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356: 781–783.

    Google Scholar 

  • Rossaro, B., 1991. Chironomids and water temperature. Aquat. Insects 13: 87–98.

    Google Scholar 

  • Rowland, P. A. & H. M. Grimshaw, 1989. Analysis of waters. In S. E. Allen (ed.), Chemical Analysis of Ecological Materials, Blackwell Scientific Publications, Lond.: 62–80.

    Google Scholar 

  • Rühling, Å. (ed.), 1992. Atmospheric heavy metal deposition in northern Europe 1990. Nord 1992: 12. Nordic Council of Ministers, Copenhagen.

  • Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–183.

    Google Scholar 

  • Schneider, S. H., 1994. Detecting climatic change signals: Are there any ‘fingerprints’? Science 263: 341–347.

    Google Scholar 

  • Schmäh, A., 1993. Variation among fossil chironomid assemblages in surficial sediments of Bodensee-Untersee (SW-Germany): implications for paleolimnological interpretation. J. Paleolimnol. 9: 99–108.

    Google Scholar 

  • Seppä, H., 1996. Post-glacial dynamics of vegetation and tree-lines in the far north of Fennoscandia. Fennia 174: 1–96.

    Google Scholar 

  • Simonen, A., 1990. The Finnish Precambrian. In P. Alalammi (ed.), Atlas of Finland, Geology, Appendix 123–126. National Board of Survey, Geographical Society of Finland, Helsinki, 1–4.

    Google Scholar 

  • Smol, J. P., I. R. Walker & P. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Verh. int. Ver. Limnol. 24: 1240–1246.

    Google Scholar 

  • Smol, J. P., B. F. Cumming, M. S. V. Douglas & R. Pienitz, 1995. Inferring past climatic changes in Canada using paleolimnological techniques. Geosci. Canada 21: 113–118.

    Google Scholar 

  • Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R.W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface waters acidification project palaeolimnology programme: modern diatom/lake-water chemistry data-set. ENSIS Publishing. Lond.

    Google Scholar 

  • Street-Perrot, F. A. & N. Roberts, 1994. Past Climates and Future Greenhouse Warming. In N. Roberts (ed.), The Changing Global Environment. Blackwell Publishers, Cambridge, 47–68.

    Google Scholar 

  • Sæther, O. A., 1975. Nearctic and Palaearctic Heterotrissocladius (Diptera: Chironomidae). Bull. Fish. Res. Bd Can. 193.

  • Sæther, O. A., 1976. Revision of Hydrobaenus, Trissocladius, Zalutschia, Paratrissocladius, and some related genera (Diptera: Chironomidae). Bull. Fish. Res. Bd Can. 195.

  • Sæther, O. A., 1979. Chironomid communities as water quality indicators. Holarct. Ecol. 2: 65–74.

    Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • ter Braak, C. J. F., 1988. CANOCO – a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Agricultural Mathematics Group Technical Report LWA–88–02. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics group, Wageningen.

    Google Scholar 

  • ter Braak, C. J. F., 1994. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1: 127–140.

    Google Scholar 

  • ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of ols and new calibration methods. Hydrobiologia 178: 209–223.

    Google Scholar 

  • ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.

    Google Scholar 

  • The Finnsih Meteorological Institute, 1991. Climatological statistics in Finland 1961–1990. Supplement to the meteorological yearbook of Finland. Helsinki.

  • Tuiskunen, J. & B. Lindeberg, 1986. Chironomidae (Diptera) from Fennoscadia north of 68 °N, with a description of ten new species and two new genera. Ann. Zool. Fenn. 23: 361–393.

    Google Scholar 

  • Walker, I. R. & R.W. Mathewes, 1987. Chironomidae (Diptera) and postglacial climate at Marion Lake, British Columbia, Canada. Quat. Res. 27: 89–102.

    Google Scholar 

  • Walker, I. R. & R. W. Mathewes, 1989a. Early postglacial chironomid succession in southwestern British Columbia, Canada, and its paleoenvironmental significance. J. Paleolimnol. 2: 1–14.

    Google Scholar 

  • Walker, I. R. & R. W. Mathewes, 1989b. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolimnol. 2: 61–80.

    Google Scholar 

  • Walker, I. R. & G. M. MacDonald, 1995. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arct. Alp. Res. 27: 258–263.

    Google Scholar 

  • Walker, I. R., C. H. Fernando & C. G. Paterson, 1984. The chironomid fauna of four shallow, humic lakes and their representation by subfossil assemblages in the surficial sediments. Hydrobiologia 112: 61–67.

    Google Scholar 

  • Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.

    Google Scholar 

  • Warner, B. G. & B. J. Hann, 1987. Aquatic invertebrates as paleoclimatic indicators? Quat. Res. 28: 427–430.

    Google Scholar 

  • Weckström, J., A. Korhola & T. Blom, 1997. The relationship between diatoms and water temperature in 30 subarctic Fennoscandian lakes. Arct. Alp. Res. 29 (in press)

  • Wiederholm, T., 1979. Chironomid remains in recent sediments of Lake Washington. Northwest Science 53: 251–256.

    Google Scholar 

  • Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1 – Larvae. Ent. scand. Suppl. 19. Lund, Sweden.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olander, H., Korhola, A. & Blom, T. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. Journal of Paleolimnology 18, 45–59 (1997). https://doi.org/10.1023/A:1007906609155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007906609155

Navigation