Advertisement

Journal of Insect Behavior

, Volume 14, Issue 2, pp 247–269 | Cite as

Marking of Nest Entrances and Vicinity in Two Related Tetramorium Ant Species (Hymenoptera: Formicidae)

  • Marie-Claire Cammaerts
  • Roger Cammaerts
Article

Abstract

Workers of the related ants Tetramorium impurum and T. caespitum mark the vicinity of their nest entrances in a species-specific manner, as seen by similarities between the behavior of nestmates and that of alien conspecifics (e.g., concerning aggregation, locomotion, orientation, tendency to move, and agonistic behavior). Additionally, they mark the inside of their nest entrances in a colony-specific manner, as seen by the following differences in behavior. Nestmates aggregate on these areas, walk rather slowly, but freely and essentially in the middle of the areas, come toward and very near such areas, are not inclined to escape, and are ready to attack possible intruders. Alien conspecifics do not aggregate, walk quickly, and are reluctant to stay on the areas, come neither toward nor very near the areas, are inclined to escape, and often open their mandibles, mainly when in front of a resident. The marking of the nest entrances is performed by T. impurum in 30 min and by T. caespitum in 15 min. If not reinforced, the marking by both species vanishes in 60 and 50 min, respectively. Extracts of hindlegs, metathorax, or metapleural glands produce in unmarked areas the ethological effect of marked entrances. It may be hypothesized that the marking factor is produced by the workers' metapleural glands and deposited onto the ground, via the hindlegs of ants leaving the nest. A worker's head has a species- but not a colony-specific ethological effect. An isolated alien conspecific's head is never attacked, whereas a thorax with abdomen is. This explains why, by opening its mandibles (and then presumably emitting a mandibular gland pheromone), a conspecific ant momentarily inhibits the attack of a nonnestmate. According to Hölldobler and Wilson (1990), the marking of the inside of T. impurum and T. caespitum nest entrances is a territorial and nest-entrance marking, whereas the marking of the close vicinity of the entrances is a home-range marking, as is the marking of the foraging area. These markings are in accordance with the fact that T. impurum foragers deposit their trail pheromone as far as the opening of the nest entrance.

ants marking metapleural glands nest entrance territoriality Tetramorium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Attygalle, A. B., and Morgan, E. D. (1983). Trail pheromone of the ant Tetramorium caespitum L. Naturwissenschaften 70: 364-365.Google Scholar
  2. Billen, J. P. J., Evershed, R. P., Attygalle, A. B., Morgan, E. D., and Ollett, D. G. (1986). Contents of Dufour glands of workers of three species of Tetramorium (Hymenoptera: Formicidae). J. Chem. Ecol. 12: 669-686.Google Scholar
  3. Cammaerts, M.-C. (1977). Recrutement d'ouvrières vers une source d'eau pure ou sucrée chez la fourmi Myrmica rubra L. (Formicidae). Biol. Behav. 2: 287-308.Google Scholar
  4. Cammaerts, M.-C. (1998). Marquage d'aires chez les fourmis. Actes Coll. Ins. Soc. 11: 133-136.Google Scholar
  5. Cammaerts, M.-C., and Cammaerts, R. (1998). Marking of nest entrance vicinity in the ant Pheidole pallidula (Formicidae, Myrmicinae). Behav. Process. 42: 19-31.Google Scholar
  6. Cammaerts, M.-C., and Cammaerts, R. (1999). Marking of nest entrances and vicinity in the ant Myrmica rubra. Biologia (Bratislava) 54: 553-556.Google Scholar
  7. Cammaerts, M.-C., and Cammaerts, R. (2000). Foraging area marking in two related Tetramorium ant species (Hymenoptera: Formicidae). J. Insect Behav. 13(5): 679-698.Google Scholar
  8. Cammaerts, M.-C., Verhaeghe, J.-C., Cammaerts, R., and Lesseux, R. (1991). A hitherto unknown ethological factor in the ant Tetramorium impurum (Myrmicinae). Behav. Process. 23: 193-203.Google Scholar
  9. Cammaerts, R., and Cammaerts, M.-C. (1987). Nest topology, nestmate recognition, territoriality and homing in the ant Manica rubida (Hymenoptera, Formicidae). Biol. Behav. 12: 65-81.Google Scholar
  10. Cammaerts, R., Pasteels, J.-M., and Roisin, Y. (1985). Identification et distribution de Tetramorium caespitum (L.) et T. impurum (Foerster) en Belgique (Hymenoptera, Formicidae). Actes Coll. Ins. Soc. 2: 109-118.Google Scholar
  11. Dejean, A., Masens, D., Kanika, K., Nsudi, M., and Buka, M. (1984). Première approche des modalités du retour au nid chez les ouvrières chasseresses d'Odontomachus troglodytes Santschi (Formicidae, Ponerinae). Actes Coll. Ins. Soc. 1: 39-47.Google Scholar
  12. Evershed, R. P., Morgan, E. D., and Cammaerts, M.-C. (1982). 3-Ethyl-2, 5-dimethylpyrazine, the trail pheromone from the venom gland of eight species of Myrmica ants. Insect Biochem. 12: 383-391.Google Scholar
  13. Hangartner, W., Reichson, J. M., and Wilson, E. O. (1970). Orientation to nest material by the ant, Pogonomyrmex badius (Latreille). Anim. Behav. 18: 331-334.Google Scholar
  14. Hölldobler, B. (1984). Communication during foraging and nest-relocation in the African stink ant, Paltothyreus tarsatus Fabr (Hymenoptera, Formicidae, Ponerinae). Z. Tierpsychol. 65: 40-52.Google Scholar
  15. Hölldobler, B., and Taylor, R. W. (1983). Abehavioral study of the primitive ant Nothomyrmecia macrops Clark. Insectes Soc. 30: 384-401.Google Scholar
  16. Hölldobler, B., and Wilson, E. O. (1986). Nest area exploration and recognition in leaf cutter ants (Atta cephalotes). J. Insect Physiol. 32: 143-150.Google Scholar
  17. Hölldobler, B., and Wilson, E. O. (1990). The Ants, Springer Verlag, Berlin.Google Scholar
  18. Jaffe, K., and Marquez, M. (1987). On agonistic behaviour among workers of the ponerine ant Ectatomma ruidum (Hymenoptera: Formicidae). Insects Soc. 34: 87-95.Google Scholar
  19. Jaffe, K., Lopez, M. E., and Aragort, W. (1986). On the communication systems of the ants Pseudomyrmex termitarius and P. triplarinus. Insectes Soc. 33: 105-117.Google Scholar
  20. Mackintosh, J. A., Trimble, J. E., Jones, M. K., Karuso, P. H., Beattie, A. J., and Veal, D. A. (1995). Antimicrobial mode of action of secretions from the metapleural gland of Myrmecia gulosa (Australian bull ant). Can. J. Microbiol. 41: 136-144.Google Scholar
  21. Maschwitz, U. (1974). Vergleichende Untersuchungen zur Funktion der Ameisenmetathorakaldrüse. Oecologia 16: 303-310.Google Scholar
  22. Maschwitz, U., Koob, K., and Schildknecht, H. (1970). Ein Beitrag zur Funktion der Metathorakaldrüse der Ameisen. J. Insect Physiol. 16: 387-404.Google Scholar
  23. Mercier, J. L., Lenoir, A., and Dejean, A. (1997). Ritualised versus aggressive behaviours displayed by Polyrhachis laboriosa (F. Smith) during intraspecific competition. Behav. Process. 41: 39-50.Google Scholar
  24. Morgan, E. D., and Ollett, D. G. (1987). Methyl 6-methylsalicylate, trail pheromone of the ant Tetramorium impurum. Naturwissenschaften 74: 596-597.Google Scholar
  25. Schildknecht, H., and Koob, K. (1970). Plant bioregulators in the metathoracic glands of myrmicine ants. Angew. Chem. Int. Ed. 9: 173.Google Scholar
  26. Seifert, B. (1996). Ameisen: Beobachten, bestimmen, Naturbuch Verlag, Augsburg.Google Scholar
  27. Siegel, S. (1956). Nonparametric Statistics for the Behavioural Sciences, McGraw-Hill, Kogakusha.Google Scholar
  28. Verhaeghe, J.-C. (1982). Food recruitment in Tetramorium impurum (Hymenoptera: Formicidae). Insectes Soc. 29: 67-85.Google Scholar
  29. Verhaeghe, J.-C., and Cammaerts, M.-C. (1993). Possible function for a previously discovered pheromone on the last sternite of the ant Tetramorium impurum Mayr (Hymenoptera, Formicidae, Myrmicinae). Behav. Process. 28: 199-208.Google Scholar
  30. Wilson, E. O., and Brown, W. H. (1984). Behaviour of the cryptobiotic predaceous ant Eurhopalothrix heliscata, n. sp. (Hymenoptera: Formicidae: Basicerotini). Insectes Soc. 31: 408-428.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Marie-Claire Cammaerts
    • 1
  • Roger Cammaerts
    • 1
  1. 1.Laboratoire de Biologie Animale et Cellulaire, Faculté des SciencesUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations