Skip to main content

Branchial carbonic anhydrase is present in the dogfish, Squalus acanthias

Abstract

The distribution of branchial carbonic anhydrase (CA) in the shark, Squalus acanthias, was studied using in situ measurements of pH disequilibrium states in post-branchial saline, and immunological techniques, immunofluorescence microscopy and Western analysis, employing rabbit polyclonal antibodies against rat pulmonary membrane associated CA IV and chick retinal cytosolic CA II. In the in situ saline perfused gill preparation, the CA inhibitor acetazolamide produced a pH disequilibium (0.063 ± 0.022 pH units) while control and bovine carbonic anhydrase perfusions did not (0.012 ± 0.017 and 0.023 ± 0.018 pH units, respectively). These results indicate that the HCO3 - dehydration reaction is accelerate by endogenous extracellular CA. Western analysis of saline perfused gill membrane preparations revealed an immunoreactive 48 kDa band with the CA IV probe. In crude gill homogenates, a 33 kDa and 31 kDa pair of bands is identified by the CA II probe. The pattern of immunolabeling for CA II in the gill epithelium was either diffuse or punctate within both lamellar and filament epithelial cells while eyrthrocytes and pillar cells displayed a diffuse staining pattern.

This is a preview of subscription content, access via your institution.

References

  • Bergenhem, N., Carlsson, U. and Strid, L. 1986. The existence of glutathione and cysteine disulfide-linked to erythrocyte carbonic anhydrase from tiger shark. Biochim. Biophys. Acta 871: 55-60.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

    Google Scholar 

  • Brown, D., Zhu, X.L. and Sly, W.S. 1990. Localization of membrane-associated carbonic anhydrase type IV in kidney epithelial cells. Proc. Natl. Acad. Sci. USA 87: 7457-7461.

    Google Scholar 

  • Brown, D., Lydon, J., McLaughlin, M., Stuart-Tilley, A., Tyszkowski, R. and Alper, S.L. 1996. Antigen retrieval in cryostat tissue sections and cultured cells treatment with sodium dodecyl sulfate (SDS). Histochem. Cell Biol. 105: 261-267.

    Google Scholar 

  • Claiborne, J.B. 1998. Acid-base regulation. In: The Physiology of Fishes. pp. 177-198. Edited by D.H. Evans. CRC Press, Boca Raton.

    Google Scholar 

  • Coleman, J.E. 1980. Current concepts of the mechanism of action of carbonic anhydrase. In: Biophysics and Physiology of Carbon Dioxide. pp. 133-150. Edited by C. Bauer, G. Gros, and H. Bartels. Springer-Verlag, Berlin.

    Google Scholar 

  • Conley, D.M. and Mallatt, J. 1987. Histochemical localization of Na+-K+-ATPase and carbonic anhydrase activity in gills of 17 fish species. Can. J. Zool. 66: 2398-2405.

    Google Scholar 

  • Curran, R.C. and Gregory, J. 1977. The unmasking of antigens in paraffin sections of tissue by trypsin. Experientia 33: 1400-1401.

    Google Scholar 

  • Enns, T. and Hill, E.P. 1983. CO2 diffusing capacity in isolated dog lung lobes and the role of carbonic anhydrase. J. Appl. Physiol. 54: 483-490.

    Google Scholar 

  • Evans, D.H. and More, K. 1988. Modes of ammonia transport across the gill epithelium of the dogfish pup (Squalus acanthias). J. Exp. Biol. 138: 375-397.

    Google Scholar 

  • Forster, R.P., Goldstein, L. and Rosen, J.K. 1972. Intrarenal control of urea reabsorption by renal tubules of the marine elasmobranch, Squalus acanthias. Comp. Biochem. Physiol. 42: 3-12.

    Google Scholar 

  • Gilmour, K.M. 1998. The disequilibrium pH: A tool for the localization of carbonic anhydrase. Comp. Biochem. Physiol. 119A: 243-254.

    Google Scholar 

  • Gilmour, K.M. and Perry, S.F. 1994. The effects of hypoxia, hyperoxia or hypercapnia on the acid-base disequilibrium in the arterial blood of rainbow trout. J. Exp. Biol. 192: 269-284.

    Google Scholar 

  • Gilmour, K.M., Henry, R.P., Wood, C.M. and Perry, S.F. 1997. Extracellular carbonic anhydrase and acid-base disequilibrium in the blood of the dogfish Squalus acanthias. J. Exp. Biol. 200: 173-183.

    Google Scholar 

  • Gros, G., Moll, W., Hoppe, H. and Gros, H. 1976. Proton transport by phosphate diffusion-A mechanism of facilitated CO2transfer. J. Gen. Physiol. 67: 773-790.

    Google Scholar 

  • Gros, G. 1991. The role of carbonic anhydrase within the tissues, with a special reference to mammalian striated muscle. In: Physiological Strategies for Gas Exchange and Metabolism. pp. 35-54. Edited by A.J. Woakes, M.K. Grieshaber, and C.R. Bridges. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hansson, H.P.J. 1967. Histochemical demonstration of carbonic anhydrase activity. Histochemie 11: 112-128.

    Google Scholar 

  • Heisler, N. 1988. Acid-base regulation. In: Physiology of the Elasmobranch Fishes. pp. 215-252. Edited by T.J. Shuttleworth. Springer-Verlag, Berlin.

    Google Scholar 

  • Heming, T.A., Geers, C., Gros, G., Bidani, A. and Crandall, E.D. 1986. Effects of dextran-bound inhibitors on carbonic anhydrase activity in isolated lungs. J. Appl. Physiol. 61: 1849-1856.

    Google Scholar 

  • Henry, R.P. and Heming, T.A. 1998. Carbonic anhydrase and respiratory gas exchange. In: Fish Physiology: Haemoglobin and Respiration. pp. 75-111. Edited by S.F. Perry and B.L. Tufts. Academic Press, San Diego.

    Google Scholar 

  • Henry, R.P., Dodgson, S.J., Forster, R.E. and Storey, B.T. 1986. Rat lung carbonic anhydrase: activity, localization and isozymes. J. Appl. Physiol. 60: 638-645.

    Google Scholar 

  • Henry, R.P., Smatresk, N.J. and Cameron, J.N. 1988. The distribution of branchial carbonic anhydrase and the effects of gill and erythrocyte carbonic anhydrase inhibition in the channel catfish Ictalurus punctatus. J. Exp. Biol. 134: 201-218.

    Google Scholar 

  • Henry, R.P., Gilmour, K.M., Wood, C.M. and Perry, S.F. 1997. Extracellular carbonic anhydrase activity and carbonic anhydrase inhibitors in the circulatory system of fish. Physiol. Zool. 70: 650-659.

    Google Scholar 

  • Kent, B. and Peirce II, E.C. 1978. Cardiovascular response to changes in blood flow in dogfish shark, Squalus acanthias. Comp. Biochem. Physiol. C 60:37-44.

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature London 227: 680-685.

    Google Scholar 

  • Lönnerholm, G. and Wistrand, P.J. 1984. Carbonic anhydrase in the human kidney: A histochemical and immunocytochemical study. Kidney Int. 25: 886-898.

    Google Scholar 

  • Maren, T.H. 1984. The general physiology of reactions catalyzed by carbonic anhydrase and their inhibition by sulfonamides. Ann. N.Y. Acad. Sci. 429: 568-579.

    Google Scholar 

  • Maren, T.H., Friedland, B.R. and Rittmaster, R.S. 1980. Kinetic properties of primative vertebrate carbonic anhydrases. Comp. Biochem. Physiol. 67: 69-74.

    Google Scholar 

  • Patel, C.B., Maren, T.H., Mills, J. and Swenson, E.R. 1997. Effects of a high molecular weight carbonic anhydrase (CA) inhibitor, F3500, on respiratory acidosis in the shark, Squalus acanthias. Bull. Mt. Desert Isl. Biol. Lab. 36: 65-68.

    Google Scholar 

  • Perry, S.F., Davie, P.S., Daxboeck, C. and Randall, D.J. 1982. A comparison of CO2excretion in a spontaneously ventilating blood-perfused trout preparation and saline-perfused gill preparations: contribution of the branchial epithelium and red blood cell. J. Exp. Biol. 101: 47-60.

    Google Scholar 

  • Pfeiffer, D.C. and Vogl, A.W. 1991. Evidence that vinculin is co-distributed with actin bundles in ectoplasmic ('juctional') specializations of mammalian sertoli cells. Anat. Rec. 231: 89-100.

    Google Scholar 

  • Rahim, S.M., Delaunoy, J.P. and Laurent, P. 1988. Identification and immunocytochemical localization of two different carbonic anhydrase isoenzymes in teleostean fish erythrocytes and gill epithelia. Histochem. 89: 451-459.

    Google Scholar 

  • Ryan, U.S., Whitney, P.L. and Ryan, J.W. 1982. Localization of carbonic anhydrase on pulmonary artery endothelial cells in culture. J. Appl. Physiol. 53: 914-919.

    Google Scholar 

  • Schultz, J.S. 1980. Facilitation of CO2through layers with a spatial distribution of carbonic anhydrase. In: Biophysics and Physiology of Carbon Dioxide. pp. 15-22. Edited by C. Bauer, G. Gros and H. Bartels. Springer-Verlag, Berlin.

    Google Scholar 

  • Swenson, E.R. and Maren, T.H. 1987. Roles of gill and red cell carbonic anhydrase in elasmobranch HCO 3- and CO2excretion. Am. J. Physiol. 253: R450-R458

    Google Scholar 

  • Swenson, E.R. 1990. Kinetics of oxygen and carbon dioxide exchange. In: Advances in Comparative and Environmental Physiology Vol. 6. pp. 163-210. Edited by R.G. Boutilier. Springer-Verlag, Berlin.

    Google Scholar 

  • Swenson, E.R., Lippincott, L. and Maren, T.H. 1995. Effect of gill membrane-bound carbonic anhydrase inhibition on branchial bicarbonate excretion in the dogfish shark, Squalus acanthias. Bull. Mt. Desert Isl. Biol. Lab. 34: 94-95.

    Google Scholar 

  • Swenson, E.R., Taschner, B.C. and Maren, T.H. 1996. Effect of membrane-bound carbonic anhydrase (CA) inhibition on bicarbonate excretion in the shark, Squalus acanthias. Bull. Mt. Desert Isl. Biol. Lab. 35: 47

    Google Scholar 

  • Tufts, B.L. and Perry, S.F. 1998. Carbon dioxide transport and excretion. In: Fish Physiology: Haemoglobin and Respiration. pp. 229-281. Edited by S.F. Perry and B.L. Tufts. Academic Press, San Diego.

    Google Scholar 

  • Waheed, A., Zhu, X.L. and Sly, W.S. 1992. Membrane-associated carbonic anhydrase from rat lung. J. Biol. Chem. 267: 3308-3311.

    Google Scholar 

  • Werner, M., von Wasielewski, R. and Komminoth, P. 1996. Antigen retrieval, signal amplification and intensification in immunohistochemistry. Histochem. Cell Biol. 105: 253-260.

    Google Scholar 

  • Whitney, P.L. and Briggle, T.V. 1982. Membrane-associated carbonic anhydrase purified from bovine lung. J. Biol. Chem. 257: 12056-12059.

    Google Scholar 

  • Wistrand, P.J. and Knuuttila, K.G. 1989. Renal membrane-bound carbonic anhydrase. Purification and properties. Kidney Int. 35: 851-859.

    Google Scholar 

  • Wood, C.M., Perry, S.F., Walsh, P.J. and Thomas, S. 1994. HCO 3- dehydration by the blood of an elasmobranch in the absence of a Haldane effect. Resp. Physiol. 98: 319-337.

    Google Scholar 

  • Zhu, X.L. and Sly, W.S. 1990. Carbonic anhydrase IV from human lung. J. Biol. Chem. 265: 8795-8801.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.J. Randall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilson, J., Randall, D., Vogl, A. et al. Branchial carbonic anhydrase is present in the dogfish, Squalus acanthias. Fish Physiology and Biochemistry 22, 329–336 (2000). https://doi.org/10.1023/A:1007890000123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007890000123

  • elasmobranch
  • gill
  • immunohistochemistry
  • membrane-associated CA IV
  • pH disequilibria