Skip to main content
Log in

Effect of Pressure on the Superconducting Transition Temperature in Mercury-Based Cuprates

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The pressure dependence of the transition temperature of the mercury-based cuprates is analyzed through a phenomenological model, based on the inverted parabolic relation between the critical temperature (T c ) and the hole concentration per CuO2 layer (n). It is found that another inverted parabolic relation between the pressure dependence of the superconducting transition temperature at the optimum hole concentration and the pressure fit the recent experimental results of the mercury-based superconductors. This relation leads to a universal relation that is obeyed not only by mercury-based cuprates but also by many other high T c compounds. In contrast to earlier studies, the transition temperature at pressure p (T c (p)) is always less than the transition temperature for the optimum hole concentration (T op c (p)) in agreement with the experiment. The effect of the pressure-induced change in the hole concentration on the transition temperature is found to be small compared to the intrinsic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Schillinmg and S. Klotz, in Physical Properties of High Temperature Superconductors, edited by D. M. Ginsberg (World Scientific, Singapore, 1992) Vol. II.

    Google Scholar 

  2. M. Takahashi and N. Mori, in Studies of High Temperature Superconductors, edited by A. V. Narlikar (Nova Science, New York, 1996) Vol. 16.

    Google Scholar 

  3. S. W. Putilin et al., Nature (London) 362, 226 (1993); A. Schilling et al. Physica C 213, 266 (1993).

    Google Scholar 

  4. L. Gao et al., Phys. Rev. B 50, 4260 (1994).

    Google Scholar 

  5. C. W. Chu et al., Nature 365, 323 (1993).

    Google Scholar 

  6. M. Nunez-Ragueiro et al., Science 262, 97 (1993).

    Google Scholar 

  7. A. K. Kleher et al., Physica C 223, 313 (1994).

    Google Scholar 

  8. J. B. Torrance et al., Phys. Rev. Lett. 61, 1127 (1988).

    Google Scholar 

  9. H. Zhang and H. Sato, Phys. Rev. Lett. 70, 1697 (1993).

    Google Scholar 

  10. C. Murayama et al. Physica C 183, 277 (1991).

    Google Scholar 

  11. J. S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 77, 151 (1996).

    Google Scholar 

  12. J. D. Jorgensen et al., Physica C 171, 93 (1990).

    Google Scholar 

  13. D. J. Singh and W. E. Pickett, Physica C 223, 237 (1994).

    Google Scholar 

  14. Y. Cao et al., Phys. Rev. B 52, 6854 (1995).

    Google Scholar 

  15. X. D. Qui et al., Physica C 282–287, 885 (1997).

    Google Scholar 

  16. C. Acha et al., Phys. Rev. B 57, R5630 (1998).

    Google Scholar 

  17. Y. J. Uemura et al., Phys. Rev. Lett. 66, 2665 (1991); Y. J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989).

    Google Scholar 

  18. T. Scneider and H. Keller, Phys. Rev. Lett. 69, 3374 (1992).

    Google Scholar 

  19. R. P. Gupta and M. Gupta, Phys. Rev. B 51, 11760 (1995).

    Google Scholar 

  20. X. Chen and Z. Jiao, Phys. Rev. B 56, 6302 (1997).

    Google Scholar 

  21. C. C. Almasan et al., Phys. Rev. Lett. 69, 680 (1992).

    Google Scholar 

  22. J. J. Neumeier and H. A. Zimmerman, Phys. Rev. B 47, 8385 (1993).

    Google Scholar 

  23. D. Tristan et al., Phys. Rev. B 55, 11832 (1997).

    Google Scholar 

  24. D. D. Berkley et al., Phys. Rev. B 47, 5524 (1993).

    Google Scholar 

  25. V. Z. Kresin, S. A. Wolf and Yu. N. Ovchinnikov, Phys. Rev. B 53, 11831 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishore, R., Lamba, S. Effect of Pressure on the Superconducting Transition Temperature in Mercury-Based Cuprates. Journal of Superconductivity 13, 613–616 (2000). https://doi.org/10.1023/A:1007885103686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007885103686

Navigation