Skip to main content
Log in

Regularity and Minimality of Infinite Variance Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

For stationary processes with infinite variance the notions of covariance and spectrum are not defined. We characterize regularity and minimality of such processes in the spirit of some classical results for second-order processes, namely values of the process forming conditional basis for their spans. Several open problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cambanis, S., Hardin, C. D., and Weron, A. (1988). Innovations and Wold decompositions of stable processes. Prob. Th. Rel. Fields 79, 1–27.

    Google Scholar 

  2. Cambanis, S., and Soltani, A. R. (1984). Prediction of stable processes: Spectral and moving average representations. Z. Wahrsch. Verw. Geb. 66, 593–612.

    Google Scholar 

  3. Cheng, R., Miamee, A. G., and Pourahmadi, M. (1998). Some extremal problems in L p (w). Proc. of Amer. Math Soc. 126, 2333–2340.

    Google Scholar 

  4. Degerine, S. (1982). Partial autocorrelation function for a scalar stationary discrete-time process. Proc. Third Franco-Belgian Meeting of Statisticians, Bruxelles: Publications des Faculles Universitaires Sait-Louis, pp. 79–94.

    Google Scholar 

  5. Doob, J. L. (1953). Stochastic Processes, John Wiley, New York.

    Google Scholar 

  6. Kolmogorov, A. N. (1941). Stationary sequences in Hilbert space. Bull. Math. Univ. Moscow 2, 1–40.

    Google Scholar 

  7. Makagan, A., and Mandrekar, V. (1990). The spectral representation of stable processes. Harmonizability and regularity. Prob. Th. Rel. Fields 85, 1–11.

    Google Scholar 

  8. Miamee, A. G., and Pourahmadi, M. (1988a). Wold decomposition, prediction and parametrization of stationary processes with infinite variance. Prob. Th. Rel. Fields 79, 145–164.

    Google Scholar 

  9. Miamee, A. G., and Pourahmadi, M. (19881)). Best approximation in L p() and prediction problems of Szegö, Kolmogorov, Yaglom and Nakazi. J. London Math. Doc. 38, 133–145.

    Google Scholar 

  10. Pourahmadi, M. (1984). On minimality and interpolation of harmonizable stable processes. SIAM J. Appl. Math. 44, 1023–1030.

    Google Scholar 

  11. Rajput, B. S., and Sundberg, C. (1994). On some extermal problems in H p and the prediction of L p-harmonizable stochastic processes. Prob. Th. Rel. Fields 99, 197–210.

    Google Scholar 

  12. Rozanov, Yu. A. (1967). Stationary Random Processes, Holden-Day, San Francisco, California.

    Google Scholar 

  13. Samorodnitsky, G., and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, New York, Chapman and Hall.

    Google Scholar 

  14. Singer, I. (1981). Bases in Banach Spaces II, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, R., Miamee, A.G. & Pourahmadi, M. Regularity and Minimality of Infinite Variance Processes. Journal of Theoretical Probability 13, 1115–1122 (2000). https://doi.org/10.1023/A:1007874226636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007874226636

Navigation