Skip to main content
Log in

β-adrenoceptor Modulation and Heart Rate Variability—The Value of Scatterplot Measures of Compactness

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

This article compares different methods of scatterplot analysis to assess the optimal methodology. The scatterplot (Poincaré plot) is a nonlinear heart rate variability method where a “return map” is constructed by plotting each current cycle against the previous beat (RR vs. RRn−1). Geometric analysis of the scatterplot allows short-term and long-term heart rate variability (HRV) to be assessed. A three-dimensional construct is also possible, where the third axis represents the density of values, at any given RR vs. RRn−1 intersection. Topological methods of analysis can compute the density distribution function or compactness of a dataset. Scatterplots that otherwise appear very similar in the two-dimensional plot may be clearly differentiated using this approach. Correct characterization may improve the ability of scatterplot analysis to predict outcomes in cardiovascular disease.

We have assessed two computational approaches that take account of scatterplot density, namely, the heart rate variability fraction and the compactness measure. Scatterplots were constructed from three double-blind and randomized placebo controlled studies conducted in a total of 49 healthy subjects. Single oral doses of antagonists (atenolol 50 mg [β-1, propranolol 160 mg [β-1 and β-2], and ICI 118,551 25 mg [β-2]) or agonists (xamoterol 200 mg [β-1], salbutamol 8 mg [β-2], prenalterol 50 mg [β-1 and β-2], and pindolol 10 mg [mainly β-2] of the cardiac β-adrenoceptor were studied.

Salbutamol, pindolol, and xamoterol increased compactness and reduced HRV fraction significantly compared with placebo. However, when compared with the more conventional scatterplot parameters, these newer density methods were found to be less discriminating. An alternative approach to improve scatterplot discrimination, using the combination of several scatterplot features, is under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Algra A, Tijssen JGP, Roelandt JRTC, Pool J, Lubsen J. Heart rate variability from 24-hour electrocardiography and the 2-year risk for sudden death. Circulation 1993;88:180-185.

    Google Scholar 

  2. Kleiger RE, Miller JP, Bigger JT, Moss AJ. The Multicenter Post-Infarction Research Group. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 1987;59:256-262.

    Google Scholar 

  3. Malik M, Farrell T, Cripps T, Camm AJ. Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J 1989;10:1060-1074.

    Google Scholar 

  4. Bigger JT, Fleiss JL, Steinman R, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 1992;85:164-171.

    Google Scholar 

  5. Ho KKL, Moody GB, Peng CK, et al. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 1997;96:842-848.

    Google Scholar 

  6. Lown B, Verrier RL. Neural activity and ventricular fibrillation. N Engl J Med 1976;294:1165-1170.

    Google Scholar 

  7. Spiers JP, Silke B, McDermott U, Shanks RG, Harron DWG. Time and frequency domain assessment of heart rate variability: a theoretical and clinical appreciation. Clin Autonom Res 1993;3:145-158.

    Google Scholar 

  8. Norwegian Multicentre Study Group. Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N Engl J Med 1981;304:801-807.

    Google Scholar 

  9. Beta-blocker Heart Attack Research Group. A randomised trial of propranolol in patients with acute myocardial infarction. JAMA 1982;247:1707-1714.

    Google Scholar 

  10. Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL. Long-range anti-correlations and non-Gaussian behavior of the heart beat. Phys Rev Lett 1993;70(9):1343-1346.

    Google Scholar 

  11. Kjekshus J, Gullestad L. Heart rate as a therapetic target in heart failure. Eur Heart J 1999;1(Suppl H):H64-H69.

    Google Scholar 

  12. The Xamoterol in Severe Heart Failure Study Group. Xamoterol in severe heart failure. Lancet 1990;336:1-6.

    Google Scholar 

  13. Silke B, Riddell JG. Effects of beta-adrenoceptor agonists and antagonists on heart-rate variability assessed using summary statistics and nonlinear procedures. J Cardiovasc Pharmacol 1997;30:817-823.

    Google Scholar 

  14. Hanratty CG, Silke B, Riddell JG. Evaluation of the effect on heart rate variability of beta2-adrenoceptor agonist and antagonist using non-linear scatterplot and sequence methods. Br J Clin Pharmacol 1999;47(2):157-166.

    Google Scholar 

  15. Sosnowski M, Latif S, Clark E, Tendera M, Macfarlane PW. A new index of heart rate variability. Eur Heart J 1999;20:P1775.

    Google Scholar 

  16. Pousset F, Copie X, LeChat P, et al. Effects of bisoprolol on heart-rate variability in heart-failure. Am J Cardiol 1996;77(8):612-617.

    Google Scholar 

  17. Brouwer J, vanVeldhuisen DJ, Man in 't Veld AJ, et al. Prognostic value of heart rate variability during long-term follow-up in patients with mild to moderate heart failure. The Dutch Ibopamine Multicentre Trial Study Group. J Am Coll Cardiol 1996;28(5):1183-1189.

    Google Scholar 

  18. Hnatkova K, Copie X, Staunton A, Malik M. Numeric processing of Lorenz plots of R-R intervals from long-term ECG's-comparison with time-domain measures of heart rate variability for risk stratification after myocardial infarction. J Electrocardiogr 1995;28:74-80.

    Google Scholar 

  19. Klugman SA, Panjer HH, Willmot GE, eds. Loss Models: From Data to Decisions. New York: Wiley, 1998.

    Google Scholar 

  20. Arnold JMO, O'Conner PC, Riddell JG, Harron DWG, Shanks RG, McDevitt DG. Effects of the beta-2 antagonist ICI 118,551 on exercise tachycardia and isoprenaline-induced beta-adrenoceptor responses in man. Br J Clin Pharmacol 1985;19:619-630.

    Google Scholar 

  21. McCaffrey PM, Riddell JG, Shanks RG. An assessment of the partial agonist activity of Ro 31,1118, flusoxolol and pindolol in man. Br J Clin Pharmacol 1987;24:571-580.

    Google Scholar 

  22. McCaffrey PM, Riddell JG, Shanks RG. The selectivity of Xamoterol, Prenalterol, and Salbutamol as assessed by their effects in the presence and absence of ICI 118,511. J Cardiovasc Pharmacol 1988;11:543-551.

    Google Scholar 

  23. Silke B, Riddell JG. Evaluation of the effect on heart rate variability of some agents acting at the beta-adrenoceptor, using non-linear scatterplot and sequence methods. Cardiovasc Drugs Ther 1998;12:439-448.

    Google Scholar 

  24. Silke B, Hanratty CG, Riddell JG. Heart-rate variability effects of β-adrenoceptor agonists (xamoterol, prenalterol, and salbutamol) assessed non-linearly with scatterplots and sequence methods. J Cardiovasc Pharmacol 1999;33:859-867.

    Google Scholar 

  25. Wagner J, Reinhardt D, Schumann HJ. Comparison of the bronchodilator and cardiovascular actions of isoprenaline, Th 1165a, terbutaline and salbutamol in cats and isolated organ preparations. Rev Exp Med 1973;162:49-62.

    Google Scholar 

  26. O'Donnell SR. An examination of some beta-adrenoceptor stimulants for selectivity using the isolated trachea and atria of the guinea pig. Eur J Pharmacol 1972;19:371-379.

    Google Scholar 

  27. Hadfield SE, Slee S-J, Snow HM. The cardiovascular pharmacology of xamoterol, cicloprolol, prenalterol and pindolol in the anaesthetised dog. Br J Clin Pharmacol 1989;28:78S-81S.

    Google Scholar 

  28. Cook N, Richardson A, Barnett DB. Comparison of the beta-1 selective affinity of prenalterol and Corwin demonstrated by radioligand binding. Eur J Pharmacol 1984;98:407-412.

    Google Scholar 

  29. Barlow JJ, Main BG, Snow HM. Beta-adrenoceptor stimulant properties of amido alkylamino-substituted 1-aryl-2-ethanols and 1-(aryloxy)-2-propanols. J Med Chem 1981;1981:24.

    Google Scholar 

  30. Nutall A, Snow HM. The cardiovascular effects of ICI 118,587: a beta-1 adrenoceptor agonist. Br J Clin Pharmacol 1982;77:381-388.

    Google Scholar 

  31. Jennings G, Bobik A, Oddie C, Restall R. Cardioselectivity, kinetics, hemodynamics, and metabolic effects of xamoterol. Clin Pharmacol Ther 1984;35(5):594-603.

    Google Scholar 

  32. Kowalski MT, Haworth D, Lu X, Thomson DS, Barnett DB. Comparison of the effects of xamoterol and isoprenaline on rat cardiac beta-adrenoceptors: studies of function and regulation. Br J Pharmacol 1990;99:27-30.

    Google Scholar 

  33. Lipworth BJ, Brown RA, McDevitt DG. Assessment of airways, tremor and chronotropic responses to inhaled salbutamol in the quantification of beta2-adrenoceptor blockade. Br J Clin Pharmacol 1989;28:95-102.

    Google Scholar 

  34. Lipworth BJ, Irvine NA, McDevitt DG. The effects of time and dose on the relative beta-1 and beta-2 adrenoceptor antagonism of betaxolol and atenolol. Br J Clin Pharmacol 1991;31:154-159.

    Google Scholar 

  35. Malik M, Cripps T, Farrell T, Camm AJ. Prognostic value of heart rate variability after myocardial infarction. A comparison of different data processing methods. Med Biol Eng Comput 1989;27:603-611.

    Google Scholar 

  36. Altman DG. Two way analysis of variance. In: Practical Statistics for Medical Research. London: Chapman & Hall, 1992:334-336.

    Google Scholar 

  37. Copie X, Leheuzey JY, Iliow MC, et al. Correlation between time-domain measures of heart rate variability and scatterplots in post-infarction patients. Pace-Pacing Clin Electrophysiol 1996;19:342-347.

    Google Scholar 

  38. Keeley EC, Lange RA, Hillis LD, Joglar JA, Page RL. Correlation between time-domain measures of heart rate variability and scatterplots in patients with healed myocardial infarcts and the influence of metoprolol. Am J Cardiol 1997;79:412-414.

    Google Scholar 

  39. Kamen PW, Krum H, Tonkin AM. Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci 1996;91:201-208.

    Google Scholar 

  40. Raetz SL, Richard CA, Garfinkel A, Harper RM. Dynamic characteristics of cardiac R-R intervals during sleep and waking states. Sleep 1991;14:526-533.

    Google Scholar 

  41. Grove A, McFarlane LC, Lipworth BJ. Expression of the beta-2 partial agonist/antagonist activity of salbutamol in states of low and high adrenergic tone. Thorax 1995;50:134-138.

    Google Scholar 

  42. Jartti T, Kaila T, Tahvanainen K, Kuusela T, Vanto T, Valimaki I. The acute effects of inhaled salbutamol on the beat-to beat variability of heart rate and blood pressure assessed by spectral analysis. Br J Clin Pharmacol 1997;43:421-428.

    Google Scholar 

  43. Waite R. Activite sympathomimetique intrinseque des betabloquants. Nouvelle Press Medicale 1978;7:2707-2709.

    Google Scholar 

  44. Clark BJ, Menninger K, Bertholet A. Pindolol: The pharmacology of a partial agonist. Br J Clin Pharmacol 1982;13:149S-158S.

    Google Scholar 

  45. Stein PK, Rottman JN, Bosner MS, Conger BM, Kleiger RE. Effects of pindolol and labetalol on heart rate variability in normal subjects. Ambul Monit 1995;8:171-178.

    Google Scholar 

  46. Jartti TT, Kuusela TA, Kaila TJ, Tahvanainen KUO, Valimaki AT. The dose-response effects of terbutaline on the variability, approximate entropy and fractal dimension of heart rate and blood pressure. Br J Clin Pharmacol 1998;45:277-285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silke, B., Hanratty, C., Veres, S. et al. β-adrenoceptor Modulation and Heart Rate Variability—The Value of Scatterplot Measures of Compactness. Cardiovasc Drugs Ther 14, 433–440 (2000). https://doi.org/10.1023/A:1007872418215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007872418215

Navigation