Skip to main content

Protease activities, plasma free amino acids and insulin at different ages of Atlantic salmon (Salmo salar L.) with genetically different trypsin isozymes

Abstract

We show significant relationships between digestion rate of dietary protein, absorption/transport rate of amino acids, and plasma insulin concentration. Digestion rate of dietary protein was indicated by protease activity ratio of trypsin to chymotrypsin in the pyloric caeca. Plasma total free amino acids and/or the ratio of essential to non-essential free amino acids indicated absorption/transport rate of amino acids. These relationships are associated with and likely to be primarily affected by genetic variation in the expression of different isozymes of trypsin, a key enzyme for feed utilization and growth, affecting digestion, absorption/transport rate of amino acids and plasma insulin levels in Atlantic salmon (Salmo salar L.).

This is a preview of subscription content, access via your institution.

References

  • Ablett, R.F., Sinnhuber, R.O., Holmes, R.M. and Selivonchick, D.P. 1981. The effect of prolonged administration of bovine insulin in rainbow trout (Salmo gairdneri R.). Gen. Comp. Endocrinol. 43: 211-217.

    Google Scholar 

  • Austreng, E., Storebakken, T. and Ã…sgÃ¥ rd, T. 1987. Growth rate estimates for cultured Atlantic salmon and rainbow trout. Aquaculture 60: 157-160.

    Google Scholar 

  • Bassompierre, M., Ostenfeld, T.H., McLean, E. and Rungruangsak-Torrissen, K. 1998. In vitro protein digestion, and growth of Atlantic salmon with different trypsin isozymes. Aquacult. Int. 6: 47-56.

    Google Scholar 

  • Fauconneau, B., Breque, J. and Bielle, C. 1989. Influence of feeding on protein metabolism in Atlantic salmon (Salmo salar). Aquaculture 79: 29-36.

    Google Scholar 

  • Haard, N.F., Dimes L.E., Arndt, R. and Dong, F.M. 1996. Estimation of protein digestibility-IV. Digestive proteinases from the pyloric caeca of Coho salmon (Oncorhynchus kisutch) fed diets containing soybean meal. Comp. Biochem. Physiol. 115B: 533-540.

    Google Scholar 

  • Hesketh, J.E. and Campbell, G.P. 1987. Effects of insulin, pertussis toxin and cholera toxin on protein synthesis and diacylglycerol production in 3T3 fibroblasts: evidence for a G-protein mediated activation of phospholipase C in the insulin signal mechanism. Bio Sci. Rep. 7: 533-543.

    Google Scholar 

  • Hesketh, J.E., Campbell, G.P. and Reeds, P.J. 1986. Rapid response of protein synthesis to insulin in 3T3 cells: effects of protein kinase C depletion and differences from the response to serum repletion. BioSci. Rep. 6: 797-804.

    Google Scholar 

  • Houde, D.E. and Schekter, R.C. 1981. Growth rate, rations and cohort consumption of marine fish larvae in relation to prey concentration. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 178: 441-453.

    Google Scholar 

  • Ince, B.W. and Thorpe, A. 1978. The effects of insulin on plasma amino acid levels in the Northern pike, Esox lucius L. J. Fish Biol. 12: 503-506.

    Google Scholar 

  • Inui, Y., Arai, S. and Yokote, M. 1975. Gluconeogenesis in the eel. VI. Effects of hepatectomy, alloxan and mammalian insulin on the behaviour of plasma amino acids. Bull. Jap. Soc. Sci. Fish. 41: 1105-1111.

    Google Scholar 

  • Lemieux, H., Blier, P.U., and Dutil, J.-D. 1999. Do digestive enzymes set physiological limit on growth rate and food conversion efficiency in Atlantic cod (Gadus morhua)? Fish Physiol. Biochem. 20: 293-303.

    Google Scholar 

  • Lowry, H.O., Rosebrough, N.J., Farr, A.L. and Randall, R.J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265-275.

    Google Scholar 

  • Machado, C.R., Garofalo, M.A.R., Roselino, J.E.C., Kettelhut, I.C. and Migliorini, R.H. 1988. Effects of starvation, refeeding, and insulin on energy-linked metabolic processes in catfish (Rhamdia hilarii) adapted to a carbohydrate-rich diet. Gen. Comp. Endocrinol. 71: 429-437.

    Google Scholar 

  • Millipore 1993. Waters AccQ Tag Chemistry Package Instruction manual. Millipore Corporation, MA, USA.

    Google Scholar 

  • Peres, A., Infante, J.L.Z. and Cahu, C. 1998. Dietary regulation of activities and mRNA levels of trypsin and amylase in sea bass (Dicentrarchus labrax) larvae. Fish Physiol. Biochem. 19: 145-152.

    Google Scholar 

  • Plisetskaya, E.M., Dickhoff, W.W., Paquette, T.L. and Gorbman, A. 1986. The assay of salmon insulin by homologous radioimmunoassay. Fish Physiol. Biochem. 1: 37-43.

    Google Scholar 

  • Rungruangsak, K. and Utne, F. 1981. Effect of different acidi-fied wet feeds on protease activities in the digestive tract and on growth rate of rainbow trout (Salmo gairdneri Richardson). Aquaculture 22: 67-79.

    Google Scholar 

  • Rungruangsak-Torrissen, K., Carter, C.G., Sundby, A., Berg, A. and Houlihan, D.F. 1999a. Maintenance ration, protein synthesis capacity, plasma insulin and growth of Atlantic salmon (Salmo salar L.) with genetically different trypsin isozymes. Fish Physiol. Biochem. 21: 223-233.

    Google Scholar 

  • Rungruangsak-Torrissen, K. and Male, R. 2000. Trypsin isozymes: development, digestion and structure. In Seafood Enzymes. pp. 215-269. Edited by N.F. Haard and B.K. Simpson. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Rungruangsak-Torrissen, K., Stensholt, B.K. and Holm, M. 1999b. Spatial distribution of Atlantic salmon post-smolts: association between genetic differences in trypsin isozymes and environmental variables. Abstract at the 17th Lowell Wakefield Fisheries Symposium on Spatial Processes and Management of Fish Populations, Anchorage, Alaska, USA.

    Google Scholar 

  • Rungruangsak-Torrissen, K., Pringle, G.M., Moss, R. and Houlihan, D.F. 1998. Effects of varying rearing temperatures on expression of different trypsin isozymes, feed conversion efficiency and growth in Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 19: 247-255.

    Google Scholar 

  • Rungruangsak-Torrissen, K., Wergeland, H.I., Glette, J. and Waagbø , R. 1999c. Disease resistance and immune parameters in Atlantic salmon (Salmo salar L.) with genetically different trypsin isozymes. Fish Shellfish Immunol. 9: 557-568.

    Google Scholar 

  • Sundby A., Eliassen, K.A., Blom, A.K. and Ã…sgÃ¥ rd, T. 1991b. Plasma insulin, glucagon, glucagon-like peptide and glucose levels in response to feeding, starvation and life long restricted feed ration in salmonids. Fish Physiol. Biochem. 9: 253-259.

    Google Scholar 

  • Sundby, A, Eliassen, K., Refstie, T. and Plisetskaya, E.M. 1991a. Plasma levels of insulin, glucagon and glucagon-like peptide in salmonids of different weights. Fish Physiol. Biochem. 9: 223-230.

    Google Scholar 

  • Sunde, J., Taranger, G.L. and Rungruangsak-Torrissen, K. 1998. Association of growth with consumption rate, protease activities and total free amino acids in plasma and white muscle of Atlantic salmon (Salmo salar L.). Multidisciplinary 30th Anniversary Meeting, Norwegian Biochemical Society, Bergen Section, Bergen, Norway, Abstract 84.

    Google Scholar 

  • Torrissen, K.R. 1984. Characterization of proteases in the digestive tract of Atlantic salmon (Salmo salar) in comparison with Rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 77B: 669-674.

    Google Scholar 

  • Torrissen, K.R. 1987. Genetic variation of trypsin-like isozymes correlated to fish size of Atlantic salmon (Salmo salar). Aquaculture 62: 1-10.

    Google Scholar 

  • Torrissen, K.R. 1991. Genetic variation in growth rate of Atlantic salmon with different trypsin-like isozyme patterns. Aquaculture 93: 299-312.

    Google Scholar 

  • Torrissen, K.R., Lied, E. and Espe, M. 1994. Differences in digestion and absorption of dietary protein in Atlantic salmon (Salmo salar) with genetically different trypsin isozymes. J. Fish Biol. 45: 1087-1104.

    Google Scholar 

  • Torrissen, K.R., Lied, E. and Espe, M. 1995. Differences in utilization of dietary proteins with varying degrees of partial prehydrolysis in Atlantic salmon (Salmo salar L.) with genetically different trypsin isozymes. In Biopolymers and Bioproducts: Structure, Function and Applications. pp. 432-442. Edited by J. Svasti, V. Rimphanitchayakit, A. Tassanakajorn, P. Pongsawasdi, B. Sonthayanon, K. Packdibamrung, S. Soontaros, T. Limpaseni, P. Wilairat, J. Boonjawat and S. Kamolsiripichaiporn. Proc. 11th FAOBMB Symp., Samakkhisan Public Company Limited, Bangkok.

    Google Scholar 

  • Torrissen, K.R., Male, R. and Næ vdal, G. 1993. Trypsin isozymes in Atlantic salmon, Salmo salar L.: studies of heredity, egg quality and effect on growth of three different populations. Aquacult. Fish. Manag. 24: 407-415.

    Google Scholar 

  • Torrissen, K.R. and Shearer, K.D. 1992. Protein digestion, growth and food conversion in Atlantic salmon and Arctic charr with different trypsin-like isozyme patterns. J. Fish Biol. 41: 409-415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rungruangsak-Torrissen, K., Sundby, A. Protease activities, plasma free amino acids and insulin at different ages of Atlantic salmon (Salmo salar L.) with genetically different trypsin isozymes. Fish Physiology and Biochemistry 22, 337–347 (2000). https://doi.org/10.1023/A:1007864413112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007864413112

  • amino acid analysis
  • Atlantic salmon
  • chymotrypsin activity
  • plasma free amino acids
  • plasma insulin
  • trypsin activity
  • trypsin isozymes