Skip to main content
Log in

Selective Limit Theorems for Random Walks on Parabolic Biangle and Triangle Hypergroups

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let K be respectively the parabolic biangle and the triangle in \({\mathbb{R}}^2\) and \(\left( {\alpha \left( p \right)} \right)_{p \in {\mathbb{N}}} \) be a sequence in [0, +∞[ such that limp→∞ α(p)=+∞. According to Koornwinder and Schwartz,(7) for each \(p \in {\mathbb{N}}\) there exist a convolution structure (*α(p)) such that (K, *α(p)) is a commutative hypergroup. Consider now a random walk \(\left( {X_j^{{\alpha }\left( p \right)} } \right)_{j \in {\mathbb{N}}}\) on (K, *α(p)), assume that this random walk is stopped after j(p) steps. Then under certain conditions given below we prove that the random variables \(\left( {X_j^{{\alpha }\left( p \right)} } \right)_{p \in {\mathbb{N}}}\) on K admit a selective limit theorems. The proofs depend on limit relations between the characters of these hypergroups and Laguerre polynomials that we give in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Annabi, H., and Triméche, K. (1974). Une convolution généralisée sur le disque unité. C. R. Acad. Sci. 278, 21–24.

    Google Scholar 

  2. Billingsley, D. (1979). Probability and Measure, Wiley.

  3. Bloom, W. R., and Heyer, H. (1995). Harmonic Analysis of Probability Measures onHypergroups, de Gruyter Studies in Mathematics, Vol. 20, de Gruyter, Berlin/New York.

    Google Scholar 

  4. Bouhaik, M., and Gallardo, L. (1992). Un théorème limite central dans un hypergroupe bidimensionnel. Ann. Inst. Poincaré 28, 47–61.

    Google Scholar 

  5. Erdeleyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. (1953). Higher Transcendental functions, Vol 2, McGraw-Hill, New York.

    Google Scholar 

  6. Erdeleyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. (1954). Tables of Integral Transforms, Vol. 2, McGraw-Hill, New York.

    Google Scholar 

  7. Koornwinder, T. H., and Schwartz, A. L. (1997). Product formulas and associated hyper-groups for orthogonal polynomials on the simplex and on a parabolic biangle. Constr. Approx. 13(4), 537–567.

    Google Scholar 

  8. Mili, M. (1996). Asymptotic behaviour of the half disk polynomials and random walks on a discrete cone. Math. Reports of the Academy of Sciences of Canada, Vol. XVIII, Nos. 2 and 3.

  9. Srivastava, H. M. (1965). On Bessel, Jacobi and Laguerre polynomials. Rendiconti Del Seminario Della Università Di Padova XXXV, 424–432.

    Google Scholar 

  10. Szegö, G. (1975). Orthogonal polynomials. Amer. Math. Soc. Colloquium Publications, Vol. 23, 4th Edition.

  11. Voit, M. (1995). Limit theorems for random walks on the double coset spaces U(n)//U(n−1) for n→∞. J. Comput. Appl. Math. 65(1–3), 449–459.

    Google Scholar 

  12. Zeuner, Hm. (1994). Limit theorems for polynomials hypergroups in several variables. In Heyer, H. (ed.), XI Proceedings Oberwlfach, World Scientific, pp. 426–436.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mili, M. Selective Limit Theorems for Random Walks on Parabolic Biangle and Triangle Hypergroups. Journal of Theoretical Probability 13, 717–731 (2000). https://doi.org/10.1023/A:1007858411844

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007858411844

Navigation