Skip to main content
Log in

Lattice Effects on Charge Localization in Cuprates

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Recent experimental results on cuprates and manganites, including those of elastic and inelastic neutron scattering measurements, suggest that charges are not homogeneously distributed even in the metallic state in these compounds. Charge inhomogeneity results from spin/lattice charge constriction. In cuprates the LO phonons strongly reflect the temperature- and composition-dependent charge inhomogeneity and may possibly be involved in causing it. Unlike the static stripes that compete against superconductivity, the charge inhomogeneity seen by the LO phonons is markedly increased in the superconducting phase. A new mechanism of high-temperature superconductivity involving lattice/spin charge constriction is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. P. Gor'kov and A. V. Sokol, JETP Lett. 46, 420 (1987).

    Google Scholar 

  2. J. C. Phillips, Phys, Rev. B 45, 12647 (1992).

    Google Scholar 

  3. Y. Bar-Yam, T. Egami, J. Mustre-de Leon, and A. R. Bishop (eds.), Lattice Effects in High-T c Superconductors (World Scientific, Singapore, 1992).

    Google Scholar 

  4. E. Sigmund and K. A. Müller (eds.), Phase Segregation in Cuprate Superconductors (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  5. T. Egami and S. J. L. Billinge, in Physical Properties of High Temperature Superconductors V D. Ginsberg, ed. (World Scientific, Singapore, 1996), p. 265.

    Google Scholar 

  6. J. M. Tranquada et al. Nature 375, 561 (1995).

    Google Scholar 

  7. R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 82, 628 (1999).

    Google Scholar 

  8. H. A. Mook and F. Dogan, Nature 401, 145 (1999).

    Google Scholar 

  9. T. Egami, R. J. McQueeney, Y. Petrov, M. Yethiraj, G. Shirane, and Y. Endoh, AIP Conf. Proc. 483, 231 (1999).

    Google Scholar 

  10. Y. Petrov, T. Egami, R. J. McQueeney, M. Yethiraj, H. A. Mook, and F. Dogan, Cond-mat/0003414.

  11. L. Pintschovius et al. Physica C 185-189, 156 (1991).

    Google Scholar 

  12. S. Ishihara, T. Egami, and M. Tachiki, Phys. Rev. B 55, 3163 (1997).

    Google Scholar 

  13. Y. Petrov and T. Egami, Phys. Rev. B 58, 9485 (1998).

    Google Scholar 

  14. Y. Petrov and T. Egami, Cond-mat/9912449.

  15. S. J. L. Billinge, J. Supercond. 13, 713 (2000); E. S. Bozin, G. H. Kwei, H. Takagi, and S. J. L. Billinge, Condmat/9907017.

    Google Scholar 

  16. H. A. Mook et al. J. Phys. Chem. Solids 59, 2140 (1998).

    Google Scholar 

  17. J. M. Tranquada et al. Phys. Rev. B 54, 7489 (1997).

    Google Scholar 

  18. T. Egami and D. Louca, J. Supercond. 13, 247 (2000).

    Google Scholar 

  19. T. Egami, J. Low Temp. Phys. 105, 791 (1996).

    Google Scholar 

  20. D. Louca, T. Egami, E. L. Brosha, H. Röder, and A. R. Bishop, Phys. Rev. B 56, R8475 (1997).

    Google Scholar 

  21. A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).

    Google Scholar 

  22. L. P. Gor'kov and V. Z. Kresin, JETP Lett. 67, 985 (1998).

    Google Scholar 

  23. M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, Science 285, 1540 (1999).

    Google Scholar 

  24. M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature (London) 399, 560 (1999).

    Google Scholar 

  25. H. Y. Hwang, S.-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).

    Google Scholar 

  26. P. G. Radaelli, G. Iannone, M. Marezio, H. Y. Hwang, S.-W. Cheong, J. D. Jorgensen, and D. N. Argyriou, Phys. Rev. B 56, 8265 (1997).

    Google Scholar 

  27. M. O. Dzero, L. P. Gor'kov, and V. Z. Kresin, unpublished.

  28. J. A. Fernandez-Baca, P. Dai, H. Y. Hwang, C. Kloc, and S.-W. Cheong, Phys. Rev. Lett. 80, 4012 (1998).

    Google Scholar 

  29. T. Egami and D. Louca, J. Supercond. 12, 23 (1999).

    Google Scholar 

  30. J. D. Axe, A. H. Moudden, D. Hohlwein, D. E. Cox, K. M. Mohanty, A. R. Moodenbaugh, and Y. Xu, Phys. Rev. Let 62, 2751 (1989).

    Google Scholar 

  31. J. B. Goodenough and J. Zhou, Phys. Rev. B 42, 4276 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egami, T., Petrov, Y. & Louca, D. Lattice Effects on Charge Localization in Cuprates. Journal of Superconductivity 13, 709–712 (2000). https://doi.org/10.1023/A:1007849811903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007849811903

Navigation