Skip to main content

Cyclosporin A metabolism in brown bullhead, Ameriurus nebulosus

Abstract

Fungi suggested to be used in the control of mosquito larvae produce biologically active cyclopeptides – cyclosporins, which can potentially accumulate in the fish feeding the infected larvae. Whereas toxicity of cyclosporins was observed at the higher doses in man and various experimental animals, the fish tolerated surprisingly high cyclosporin blood levels. Hydroxy-cyclosporins predominated among metabolites excreted into water. In contrast, various N-demethylated cyclosporins created the major part of metabolites identified in the liver and bile. Two new metabolites are described – AM1N and AM6N,10N, which were not so far reported from mammals. Due to the much higher tolerance to cyclosporin, brown bullhead can serve the experimental model to obtain cyclosporin metabolites.

This is a preview of subscription content, access via your institution.

References

  • Celander, M., Buhler, D.R., Förlin, L., Goksøyr, A., Miranda, C.L., Woodin, B.R. and Stegeman, J.J. 1996. Immunochemical relationships of cytochrome P450 3A-like proteins in teleost fish. Fish Physiol. Biochem. 15: 323-332.

    Google Scholar 

  • Biemann, K. and Martin, S.A. 1987. Mass spectrometric determination of the amino acid sequence of peptides and proteins. Mass Spectrom. Rev. 6: 1-76.

    Google Scholar 

  • Bowers, L.D., Norman, D.D., Yan, X.-X., Scheeler, D. and Carlson, K.L. 1990. Isolation and structural identification of 9Hydroxy-9desmethyl-cyclosporine. Clin. Chem. 36: 1875-1879.

    Google Scholar 

  • Bowers, V.D., Locker, S., Ames, S., Jennings, W. and Corry, R.J. 1991. The hemodynamic-effects of Cremophor-El. Transplantation 51: 847-850.

    Google Scholar 

  • Brooks, C.A., Cramer, S.M. and Rosano, T.G. 1993. Preparative chromatographic purification of cyclosporine metabolites. Clin. Chem. 39: 457-466.

    Google Scholar 

  • Goksøyr, A. and Förlin, L. 1992. The cytochrom P-450 system in fish, aquatic toxicology and environmental monitoring. Aquatic Toxicol. 22: 287-312.

    Google Scholar 

  • Hartman, N.R., Trimble, L.A., Vederas, J.C. and Jardine, I. 1985. An acid metabolite of cyclosporine. Biochem. Biomed. Res. Commun. 133: 964-971.

    Google Scholar 

  • Hasspieler, B.M, Behar, J.V., Carlson, D.B., Watson, D.E. and Di Giulio, R.T. 1994. Susceptibility of channel catfish (Ictalurus punctatus) and brown bullhead (Ameriurus nebulosus) to oxidative stress: a comparative study. Aquatic Toxicol. 28: 53-64.

    Google Scholar 

  • Havlíček, V., Jegorov, A., Sedmera, P. and Ryska, M. 1993. Sequencing of cyclosporins by fast atom bombardment and linkedscan mass spectrometry. Org. Mass Spectrom. 28: 1440-1447.

    Google Scholar 

  • Havlíček, V., Jegorov, A., Sedmera, P., Wagner-Redeker, W. and Ryska, M. 1995. Distinguishing isobaric amino acid in sequence analysis of cyclosporins by fast atom bombardment and linked-scan mass spectrometry. J. Mass Spectrom. 30: 940-948.

    Google Scholar 

  • James, M.O., Altman, A.H., Morris, K., Kleinow, K.M. and Tong, Z. 1997. Dietary modulation of phase 1 and phase 2 activities with benzo(A)pyrene and related compounds in the intestine but not the liver of the channel catfish, Ictalurus punctatus. Drug Metabol. Disp. 25: 346-354.

    Google Scholar 

  • Jegorov, A., Mat'ha, V., Sedmera, P., Havlíček, V., Stuchlík, J., Seidel, P. and Šimek, P. 1995. Cyclosporins from Tolypocladium terricola. Phytochemistry 38: 403-407.

    Google Scholar 

  • Lee, S.J., Wangbuhler, J.L., Cok, I., Yu, T.S., Miranda, C. L., Lech, J. and Buhler, D.R. 1998. Cloning, sequencing, and tissue expression of Cyp3A27, a new member of the Cyp3A subfamily from embrionic and adult rainbow-trout livers. Arch. Biochem. Biophys. 360: 53-61.

    Google Scholar 

  • Lensmeyer, G.L., Wiebe, D.A. and Carlson, I.H. 1987. Identification and analysis of nine metabolites of cyclosporine in whole blood by liquid chromatography. 2. Comparison of patient's results. Clin. Chem. 33: 1851-1855.

    Google Scholar 

  • Lorenz, W., Doenicke, A., Kapp, B., Lang, S., Luben, L., Ohmann, C., Schmal, A., Schult, H. and Weber, D. 1982. Histamine-release and hypotensive reactions in dogs by solubilysing agents and fatty-acids-Analysis of various components in Cremophor El and development of a compound with reduced toxicity. Agents and Actions 12: 64-80.

    Google Scholar 

  • Nassberger, L., Bergstrand, A. and Depierre, J.W. 1991. An electron and fluorescence microscopic study of LLC-Pk1 cells, a kidney epithelial-cell line-Normal morphology and cyclosporine-A induced and Cremophor-induced alterations. Int. J. Exp. Pathol. 72: 365-378.

    Google Scholar 

  • Perkins, E.J. and Schlenk, D. 1998. Immunochemical characterization of hepatic cytochrome-P450 isoenyzmes in the chanel catfish-assessment of sexual, developmental and treatment-related effects. Comp. Biochem. Physiol C, Pharmacol. Toxicol. Endocrinol. 121: 305-310.

    Google Scholar 

  • Pichard, L., Domeeque, J., Fourtanier, G., Koch, P., Schran, H.F. and Maurel, P. 1996. Metabolism of the new immunosuppressor cyclosporin G by human liver cytochromes P450. Biochem. Pharmacol. 51: 591-598.

    Google Scholar 

  • Podsiadlowski, L., Mat'ha, V. and Vilcinskas, A. 1998. Detection of a P-Glycoprotein Related Pump in Chironomus Larvae and Its Inhibition by Verapamil and Cyclosporine-A. Comparativ. Biochem. Physiol. B 121: 443-450.

    Google Scholar 

  • Prueksaritanont, T., Correia, M.A., Rettie, A.E., Swinney, D.C., Thomas, P.E. and Benet, L.Z. 1993. Cyclosporine metabolism by rat liver microsomes. Evidence for involvement of enzyme(s) other than cytochromes P-450 3A. Drug Metabol. Disp. 21: 730-737.

    Google Scholar 

  • Sedmera, P., Havlíček, V., Jegorov, A. and Segre, A.L. 1995. Cyclosporin D hydroperoxide, a new metabolite of Tolypocladium terricola. Tetrahedron Lett. 36: 6953-6956.

    Google Scholar 

  • Soares, G.G., Riba, G. and Caudal, A. 1985. Comparative studies of eleven isolates of the fungal etomopathogen Tolypocladium cylindrosporumand two isolates of Tolypocladium extinguens. J. Invertebr. Pathol. 46: 115-120.

    Google Scholar 

  • Stegeman, J.J. 1992. Nomenclature for hydrocarbon-inducible cytochrome-P450 in fish. Marine Environ. Res. 34: 133-138.

    Google Scholar 

  • Tomolang, M.B., Liu, W.T., Pang, H., Ren, Y. and Wong, P. Y. 1995. A rifampicin-induced hepatic microsomal enzyme system for the generation of cyclosporine metabolites. Pharmacol. Res. 32: 141-148.

    Google Scholar 

  • Traber, R., Hofmann, H., Loosli, H.-R., Ponelle, M. and von Wartburg, A. 1986. Neue Cyclosporine aus Tolypocladium inflatum, Die Cyclosporine K-Z. Helv. Chim. Acta 70: 13-36.

    Google Scholar 

  • Venkataramanan, R., Wang, C.P., Habacky, K., Patchcinski, R.J., Burckart, G.J., Koneru, B., Baker, R., Todo, S. and Starzl, T.E. 1988. Species-specific cyclosporine metabolism. Transplant. Proc. 20: 680-683.

    Google Scholar 

  • Weiser, J., Mat'ha, V. and Jegorov, A. 1991. Tolypocladium terricolasp. N., a new mosquito-killing species of the genus TolypocladiumGams. Folia Parasitol. 38: 363-369.

    Google Scholar 

  • Wenger, R.M. 1986. Cyclosporine and analogues-isolation and synthesis-mechanism of action and structural requirements for pharmacological activity. Progr. Chem. Org. Nat. Products, 50: 123-168.

    Google Scholar 

  • Whalen, R.D., Tata, P.N.V., Burckart, G.J. and Venkataramanan, R. 1999. Species differences in the hepatic and intestinal metabolism of cyclosporine. Xenobiotica 29: 3-9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jegorov, A., Halada, P. & Šafarčík, K. Cyclosporin A metabolism in brown bullhead, Ameriurus nebulosus. Fish Physiology and Biochemistry 23, 257–264 (2000). https://doi.org/10.1023/A:1007844212439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007844212439

  • brown bullhead
  • cyclic peptides
  • cyclosporin
  • mass spectrometry
  • metabolites