Skip to main content

Mechanisms of action of pituitary adenylate cyclase-activating polypeptide (PACAP) on growth hormone release from dispersed goldfish pituitary cells

Abstract

The mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP) action on goldfish growth hormone (GH) release were investigated by examining GH release responses from dispersed goldfish pituitary cells to a synthetic mammalian (m)PACAP38 peptide. It was established that GH release stimulated by 2-h exposure to mPACAP38 was concentration-dependent, attenuated by the PACAP receptor antagonist mPACAP6−38, and subject to neuroendocrine modulation by somatostatin. Maximal mPACAP38-stimulated GH release was not additive to the responses elicited by either the adenylate cyclase activator forskolin or the cyclic (c)AMP analog 8-bromo-cAMP. The GH responses to mPACAP38, forskolin and 8-bromo-cAMP, either alone or in combination, were abolished by H89, a protein kinase A (PKA) inhibitor. SQ22536, an adenylate cyclase inhibitor, attenuated forskolin- and mPACAP38-stimulated GH release. In contrast, mPACAP38-stimulated GH release were additive to the responses to two protein kinase C (PKC) activators and unaffected by two PKC inhibitors. These results suggest that the stimulatory action of PACAP on GH secretion is mediated through a cAMP- / PKA-dependent mechanism, whereas the involvement of PKC appears unlikely. The ability of mPACAP38 to further enhance maximal GnRH (PKC)-dependent GH release, but not dopamine D1 agonist (PKA)-dependent GH secretion, is consistent with this hypothesis. A possible involvement of Ca2+ in PACAP action is also suggested. Two inhibitors of voltage-sensitive Ca2+ channel reduced the GH responses to mPACAP38 in static incubation; conversely, mPACAP38 increased intracellular [Ca2+] in identified, single goldfish somatotropes.

This is a preview of subscription content, access via your institution.

References

  • Arimura, A. and Shioda, S. 1995. Pituitary adenylate cyclase polypeptide (PACAP) and its receptors: Neuroendocrine and endocrine interaction. Front. Neuroendocrinol. 16: 53-88.

    Google Scholar 

  • Berridge, M.J. 1993. Inositol trisphosphate and calcium signalling. Nature 361: 315-325.

    Google Scholar 

  • Berridge, M.J. 1994. Spatiotemporal aspects of calcium signalling. In: Perspectives in Comparative Endocrinology. pp. 1-4. Edited by K.G. Davey, R.E. Peter and S.S. Tobe. Natl. Res. Council Can., Ottawa.

    Google Scholar 

  • Bluet-Pajot, M.T., Epelbaum, J., Gourdji, D., Hammond, C. and Kordon, C. 1998. Hypothalamic and hypophyseal regulation of growth hormone. Cell. Mole. Neurobiol. 18: 101-123.

    Google Scholar 

  • Chang, J.P., Cook, H., Freedman, G.L., Wiggs, A.J., Somoza, G.M., de Leeuw, R. and Peter, R.E. 1990a. Use of a pituitary cell dispersion method and primary culture system for the studies of gonadotropin-releasing hormone action in the goldfish, Carassius auratus. I. Initial morphological, static, and cell column perifusion studies. Gen. Comp. Endocrinol. 77: 256-273.

    Google Scholar 

  • Chang, J.P., Jobin, R.M. and de Leeuw, R. 1991. Possible involvement of protein kinase C in gonadotropin and growth hormone release from dispersed goldfish pituitary cells. Gen. Comp. Endocrinol. 81: 447-463.

    Google Scholar 

  • Chang, J.P., Van Goor, F., Wong, A.O.L., Jobin, R.M. and Neumann, C.M. 1994. Signal transduction pathways in GnRHand dopamine D1-stimulated growth hormone secretion in the goldfish. Chin. J. Physiol. 37: 111-127.

    Google Scholar 

  • Chang, J.P., Yu, K.-L., Wong, A.O.-L. and Peter, R.E. 1990b. Differential actions of dopamine receptor subtypes on gonadotropin and growth hormone release in vitroin goldfish. Neuroendocrinology 51: 664-674.

    Google Scholar 

  • Christophe, J. 1993. Type I receptors for PACAP (a neuropeptide even more important than VIP?). Biochim. Biophys. Acta 1154: 183-199.

    Google Scholar 

  • DeLean, A., Munson, P.J. and Rodbard, D. 1978. Simultaneous analysis of families of sigmoidal curves: application of bioassay, radioligand assay, and physiological dose-response curves. Amer. J. Physiol. 235: E97-E102.

    Google Scholar 

  • Fabbri, E., Brighenti, L. and Ottolenghi, C. 1991. Inhibition of adenylate cyclase of catfish and rat hepatocyte membranes by 9-(tetrahydro-2-furyl)adenine (SQ 22536). J. Enzyme Inhib. 5: 87-98.

    Google Scholar 

  • Geiges, D., Meyer, T., Marte, B., Vanek, M., Weissgerber, G., Stabel, S., Pfeilschifter, J., Fabbro, D. and Huwiler, A. 1997. Activation of protein kinase C subtypes α, γ, δ,ε, ζ, and ηby tumor-promoting and nontumor-promoting agents. Biochem. Pharm. 53: 865-875.

    Google Scholar 

  • Gracia-Navarro, F., Lamacz, M., Tonon, M.C. and Vaudry, H. 1992. Pituitary adenylate cyclase-activating polypeptide stimulates calcium mobilization in amphibain pituitary cells. Endocrinology 131: 1069-1074.

    Google Scholar 

  • Grynkiewicz, G., Peonie, M. and Tsien, R.Y. 1985. A new generation of Ca2+indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440-3450.

    Google Scholar 

  • Herbert, J.M., Augereau, J.M., Gleye, J. and Maffrand, J.P. 1990. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun. 172: 993-999.

    Google Scholar 

  • Hodgkin, M.N., Pettitt, T.R., Martin, A., Michell, R.H., Pemberton, A.J. and Wakelam, J.O. 1998. Diacylglycerols and phosphatidates: which molecular species are intracellular messengers. TIBS. 23: 200-204.

    Google Scholar 

  • Jarvis, W.D., Turner, A.J., Povirk, L.F., Traylor, R.S. and Grant, S. 1994. Induction of apoptotic DNA fragmentation and cell death in HL-60 human promyelocytic leukemia cells by pharmacological inhibitors of protein kinase C. Cancer Res. 54: 1707-1714.

    Google Scholar 

  • Jobin, R.M., Ginsberg, J., Matowe, W.C. and Chang, J.P. 1993. Downregulation of protein kinase C levels leads to inhibition of GnRH-stimulated gonadotropin secretion from dispersed pituitary cells of goldfish. Neuroendocrinology 58: 2-10.

    Google Scholar 

  • Kobayashi, E., Nakano, H., Morimoto, M. and Tamaoki, T. 1989. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun. 159: 548-553.

    Google Scholar 

  • Koshimura, K., Murakami, Y., Mitsushima, M., Hori, T. and Kato, Y. 1997. Activation of NaC channels in GH3 cells and human pituitary adenoma cells by PACAP. Peptides 18: 877-883.

    Google Scholar 

  • Kwong, P. and Chang, J.P. 1997. Somatostatin inhibition of growth hormone release in goldfish: Possible targets of intracellular mechanisms of action. Gen. Comp. Endocrinol. 108: 446-456.

    Google Scholar 

  • Leung M.Y., Chang, J.P., Chow, B.K.C. and Wong, A.O.L. 1997. Pituitary adenylate cyclase activating polypeptide (PACAP) functions as a novel growth hormone (GH) releasing factor in the goldfish. In: Advances in Comparative Endocrinology. pp. 681-686. Edited by S. Kawashima and S. Kikuyama. Monduzzi Editore, Bologna, Italy.

    Google Scholar 

  • Leurs R., Smit, M.J., Alewijhse, A.E. and Timmerman, H. 1998. Agonist-independent regulation of constitutively active G-protein-coupled receptors. TIBS. 23: 418-422.

    Google Scholar 

  • Lin, X.-W., Otto, C.J. and Peter, R.E. 1998. Evolution of neuroendocrine peptide systems: gonadotropin-releasing hormone and somatostatin. Comp. Biochem. Physiol. 119C: 375-388.

    Google Scholar 

  • Marchant, T.A., Fraser, R.A., Andrews, P.C. and Peter, R.E. 1987. The influence of mammalian and teleost somatostatins on the secretion of growth hormone from goldfish (Carassius auratusL.) pituitary fragments in vitro. Regul. Pept. 17: 41-52.

    Google Scholar 

  • Martinez-Fuentes, A.J., Castano, J.P., Gracia-Navarro F. and Malagon, M.M. 1998a. Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP27 activate common and distinct intracellular signalling pathways to stimulate growth hormone secretion from porcine somatotropes. Endocrinology 139: 5116-5124.

    Google Scholar 

  • Martinez-Fuentes, A.J., Castano, J.P., Malagon, M.M., Vazquez-Martinez, R. and Gracia-Navarro, F. 1998b. Pituitary adenylatecyclase activating polypeptides 38 and 27 increase cytosolic Ca2C concentration in porcine somatotropes through common and distinct mechanisms. Cell Cal. 23: 369-378.

    Google Scholar 

  • Marinez-Fuentes, A.J., Malagon, M.M., Castano, J.P., Garrido-Gracia, J.C. and Gracia-Navarro, F. 1998c. Pituitary adenylate cyclase-activating polypeptide (PACAP)38 and PACAP27 differentially stimulate growth hormone release and mRNA accumulation in porcine somatotropes. Life Sci. 62: 2379-2390.

    Google Scholar 

  • McRory, J.E., Parker, R.L., Ngamvongchon, S. and Sherwood, N.M. 1995. Sequence and expression of cDNA for pituitary adenylate cyclase activating polypeptide (PACAP) and growth hormonereleasing hormone (GHRH)-like peptide in catfish. Mole. Cell. Endocrinol. 108: 169-177.

    Google Scholar 

  • Montero, M., Yon, L., Rousseau, K., Arimura, A., Fournier, A., Dufour, S. and Vaudry, H. 1998. Distribution, characterization, and growth hormone-releasing activity of pituitary adenylate cyclaseactivating polypeptide in the European eel, Anguilla anguilla. Endocrinology 139: 4300-4310.

    Google Scholar 

  • Murakami, Y., Tanaka, J., Koshimura, K. and Kato, Y. 1998. Involvement of tetrodotoxin-sensitive sodium channels in rat growth hormone secretion induced by pituitary adenylate cyclase-activating polypeptide (PACAP). Regul. Pept. 73: 119-121.

    Google Scholar 

  • Ogiwara, T., Chik, C.L. and Ho, A.K. 1996. Tyrosine kinase inhibitors enhance GHRH-stimulated cAMP accumulation and GH release in rat anterior pituitary cells. J. Endocrinol. 152: 193-199.

    Google Scholar 

  • Parker, D.B., Power, M.E., Swanson, P., Rivier, J. and Sherwood, N.M. 1997. Exon skipping in the gene encoding pituitary adenylate cyclase-activating polypeptide in salmon alters the expression of two hormones that stimulate growth hormone release. Endocrinology 138: 414-423.

    Google Scholar 

  • Peeters, K., Langouche, L., Vandesande, F., Darras, V.M. and Berghman, L.R. 1998. Effects of pituitary adenylate cyclaseactivating polypeptide (PACAP) on cAMP formation and growth hormone release from chicken anterior pituitary cells. Ann. N. Y. Acad. Sci. 865: 471-474.

    Google Scholar 

  • Peng, C. and Peter, R.E. 1997. Neuroendocrine regulation of growth hormone secretion and growth in fish. Zool. Stud. 36: 78-89.

    Google Scholar 

  • Peter, R.E. and Chang, J.P. 1999. Brain regulation of growth hormone secretion and food intake in fish. In: Regulation of the Vertebrate Endocrine System. pp. 55-67. Edited by P.D.P. Rao and R.E. Peter. Plenum, New York.

    Google Scholar 

  • Peter, R.E. and Marchant, T.A. 1995. The endocrinology of growth in carp and related species. Aquaculture 129: 299-321.

    Google Scholar 

  • Price, C.J., Goldberg, J.I. and Chang, J.P. 1993. Voltage-activated ionic currents in goldfish pituitary cells. Gen. Comp. Endocrinol. 92: 16-30.

    Google Scholar 

  • Rawlings, S.R. 1994. PACAP, PACAP receptors, and intracellular signalling. Mole. Cell. Endocrinol. 101: C5-C9.

    Google Scholar 

  • Rawlings, S.R. and Hezareh, M. 1996. Pituitary adenylate cyclaseactivating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: Actions on the anterior pituitary gland. Endocrine Rev. 17: 4-29.

    Google Scholar 

  • Rawlings, S.R., Canny, B.J. and Leong, D.A. 1993. Pituitary adenylate cyclase-activating polypeptide regulates cytosolic Ca2+in rat gonadotropes and somatotropes through different intracellular mechanisms. Endocrinology 132: 1447-1452.

    Google Scholar 

  • Shuto, Y., Somogyvari-Vigh, A., Onda, H. and Arimura, A. 1995. Effect of hypophysectomy on pituitary adenylate cyclase activating polypeptide gene expression in the rat hypothalamys. Peptides 16: 407-413.

    Google Scholar 

  • Tanaka, K., Shibuya, I., Nagatomo, T., Yamashita, H. and Kanno, T. 1996. Pituitary adenylate cyclase-activating polypeptide causes rapid Ca2+release from intracellular stores and long lasting Ca2+influx mediated by Na+influx-dependent membrane depolarization in bovine adrenal chromaffin cells. Endocrinology 137: 956-966.

    Google Scholar 

  • Van Goor, F., Goldberg, J.I. and Chang, J.P. 1996. Electrical membrane properties and ionic currents in cultured goldfish gonadotrophs. Can. J. Physiol. Pharmacol. 74: 729-743.

    Google Scholar 

  • Van Goor, F., Goldberg, J.I. and Chang, J.P. 1997. Extracellular sodium dependence of GnRH-stimulated growth hormone release in goldfish pituitary cells. J. Neuroendocrinol. 9: 207-216.

    Google Scholar 

  • Van Goor, F., Goldberg, J.I., Wong, A.O.L., Jobin, R.M. and Chang, J.P. 1994. Morphological identification of live gonadotropin, growth-hormone and prolactin cells in goldfish (Carassius auratus) pituitary-cell cultures. Cell Tiss. Res. 276: 253-261.

    Google Scholar 

  • Wagner, C., Caplan, S.R. and Tannenbaum, G.S. 1998. Genesis of the ultradian rhythm of GH secretion: a new model unifying experimental observations in rats. Amer. J. Physiol. 275: E1046-1054.

    Google Scholar 

  • Wong, A.O.L., Chang, J.P. and Peter, R.E. 1992. Dopamine stimulates growth hormone release from the pituitary of gold-fish, Carassius auratus, through the dopamine D1 receptors. Endocrinology 130: 1201-1210.

    Google Scholar 

  • Wong, A.O.L., Chang, J.P. and Peter, R.E. 1993a. Characterization of D1 receptors mediating dopamine-stimulated growth hormone release from pituitary cells of the goldfish, Carassius auratus. Endocrinology 133: 577-584.

    Google Scholar 

  • Wong, A.O.L., Chang, J.P. and Peter, R.E. 1993b. Interactions of somatostatin, gonadotropin-releasing hormone, and the gonads on dopamine-stimulated growth hormone release in the goldfish. Gen. Comp. Endocrinol. 92: 366-378.

    Google Scholar 

  • Wong, A.O.L., Leung, M.Y., Shea, W.L.C., Tse, L.Y., Chang, J.P. and Chow, B.K.C. 1998. Hypophysiotropic action of pituitary adenylate cyclase activating polypeptide (PACAP) in the gold-fish: Immunohistochemical demonstration of PACAP iin the pituitary, PACAP stimulation of growth hormone release from pituitary cells, and molecular cloning of goldfish pituitary type I PACAP receptor. Endocrinology 139: 3465-3479.

    Google Scholar 

  • Wong, A.O.L., Van Der Kraak, G. and Chang, J.P. 1994a. Cyclic 3':5'-adenosine monophosphate (cAMP) mediates dopamine D1-stimulated growth hormone release from goldfish pituitary cells. Neuroendocrinology 60: 410-417.

    Google Scholar 

  • Wong, A.O.L., Van Goor, F., Jobin, R.M., Neumann, C.M. and Chang, J.P. 1994b. Interactions of cyclic adenosine 3',5'-monophosphate, protein kinase-C, and calcium in dopamine-and gonadotropin-releasing hormone-stimulated growth hormone release in the goldfish. Endocrinology 135: 1593-1604.

    Google Scholar 

  • Yada, T., Vigh, S. and Arimura, A. 1993. Pituitary adenylate cyclase activating polypeptide (PACAP) increases cytosolic-free calcium concentration in folliculo-stellate cells and somatotropes of rat pituitary. Peptides 14: 235-239.

    Google Scholar 

  • Yamauchi, K., Murakami, Y., Koshimura, K., Jishiki, M., Tanaka, J. and Kato, Y. 1996. Involvement of pituitary adenylate cyclaseactivating polypeptide in growth hormone secretion induced by serotoninergic mechanisms in the rat. Endocrinology 137: 1693-1697.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wirachowsky, N.R., Kwong, P., Yunker, W.K. et al. Mechanisms of action of pituitary adenylate cyclase-activating polypeptide (PACAP) on growth hormone release from dispersed goldfish pituitary cells. Fish Physiology and Biochemistry 23, 201–214 (2000). https://doi.org/10.1023/A:1007837708880

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007837708880

  • signal transduction
  • cyclic AMP
  • protein kinase A
  • protein kinase C
  • [Ca2+]i
  • voltage-sensitive Ca2+ channels