Skip to main content
Log in

Room-Tc Superconductivity on Whispering Mode in Quasi-1D Composite of Superconducting Nanotubes: Is It Possible?

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Combining Little's and Ginzburg's ideas with recent progress in nanotubes research, a novel type of material is advanced as a perspective high-T c superconductor on a base of a close-packed lattice of quasi-1D superconducting nanotubes. Idea is offered that superconducting coaxial multilayer nanotubes of the correlation length in diameter is an ideal and natural trap for pinning of Abrikosov vortex. Nanotube should be layered superconductor, such as LuNiBC. Mechanism of superconductivity was proposed and substantiated quantitatively on a base of a whispering mode, which is shown to be responsible for a strong enhancement of electron–phonon interaction and for an increase of critical temperature. Nanocomposite built from such quasi-1D nanotubes when coinciding with vortex lattice provides ideal conditions for the pinning, resonance, distortion, ordering, and Little–Parks effects, the joint action of which is suggested to result in synergetic effect increasing the superconductivity. Such quasi-1D or 2D nanotubular crystal is proposed to synthesize by template approach using zeolite-like membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. L. Ginzburg, Uspekhi Fiz. Nauk 95, 91 (1968); 101, 185 (1970); 167, 429 (1997).

    Google Scholar 

  2. P. G. De Gennes, Superconductivity of Metals and Alloys (W. A. Benjamin, New York–Amsterdam, 1966).

    Google Scholar 

  3. S. Iijima, Nature 354, 56 (1991).

    Google Scholar 

  4. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, Science 275, 1922 (1997).

    Google Scholar 

  5. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. Smalley, L. J. Geerligs, and C. Dekker, Nature 386, 474 (1997).

    Google Scholar 

  6. C. Dekker, Physics Today 52, 22 (1999).

    Google Scholar 

  7. A. Bachtold, C. Strunk, J. P. Salvetat, J. M. Bonard, L. Forro, T. Nussbaumer, and C. Schonenberger, Nature 397, 673 (1999).

    Google Scholar 

  8. L. A. Chernozatonsky, Ya. K. Shimkus, and I. V. Stankevich, Phys. Lett. A 240, 105 (1998).

    Google Scholar 

  9. V. V. Moshchalkov, M. Baert, V. V. Metlushko, et al., Phys. Rev. B 57, 3615 (1998).

    Google Scholar 

  10. I. K. Schuller, Nature 394, 419 (1998); J. P. Locquet, J. Perret, J. Fompeyrine, E. Machler, J. P. Seo, G. Van Tendeloo, Nature 394, 454 (1998).

    Google Scholar 

  11. A. Y. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. I. Khodos, Y. B. Gorbatov, V. T. Volkov, C. Journet, and M. Burgard, Science 284, 1508 (1999).

    Google Scholar 

  12. R. S. Lee, H. J. Kim, J. E. Fisher, A. Thess, and R. E. Smalley, Nature 388, 255 (1997).

    Google Scholar 

  13. A. Fukunaga, S. Y. Chu, and M. E. McHenry, J. Mat. Res. 13, 2465 (1998).

    Google Scholar 

  14. V. V. Pokropivny, Metallofizika i Noveishie Tekhnologii 22, (2000) (in press); Abstracts of Int. Conf. “Advanced Materials” (Kiev, 1999) p. 244.

  15. High-Temperature Superconductivity,V. L. Ginzburg and D. A. Kirzhnits eds. (New York, Consultants Bureau, 1982).

    Google Scholar 

  16. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eclund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187 (1997).

    Google Scholar 

  17. J. Bok and J. Bouvier, J. Superconduct. 12, 27 (1999).

    Google Scholar 

  18. R. J. Cava, H. Takagi, H. W. Zandbergen, J. J. Krajewski, W. F. Peck Jr, T. Siegrist, B. Batiogg, R. B. Van Dover, R. J. Felder, K. Mizuhashi, J. O. Lee, H. Eisaki, and S. Uchida, Nature 367, 252, 254 (1994).

    Google Scholar 

  19. L. F. Mattheiss, T. Siegrist, and R. J. Cava, Sol. St. Commun 91, 587 (1994).

    Google Scholar 

  20. W. E. Pickett and D. J. Singh, Phys. Rev. Lett. 72, 3702 (1994).

    Google Scholar 

  21. G. Wang and K. Maki, Phys. Rev B 58, 6493 (1998).

    Google Scholar 

  22. R. Saito, T. Takeya, and T. Kimura, Phys. Rev. B 57, 4145 (1998).

    Google Scholar 

  23. Hoppe, Crelle 63, 158 (1871).

    Google Scholar 

  24. C. R. Martin, Science 266, 1961 (1994).

    Google Scholar 

  25. Z. K. Tang, H. D. Sun, J. Wang, et al., B. Mat. Sci 22, 329 (1999); J. Korean Phys. Soc. 34, S7 (1999).

    Google Scholar 

  26. J. Li, C. Papadopouulos, J. M. Xu, and M. Moskovits, Appl. Phys. Lett. 75, 367 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokropivny, V.V. Room-Tc Superconductivity on Whispering Mode in Quasi-1D Composite of Superconducting Nanotubes: Is It Possible?. Journal of Superconductivity 13, 607–612 (2000). https://doi.org/10.1023/A:1007833119616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007833119616

Navigation