Skip to main content
Log in

Plasmon–Phonon Pairing Mechanism and Superconducting State Parameters in Layered Mercury Cuprates

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

An effective two-dimensional dynamic interaction is developed which incorporates screening of holes by plasmons and by optical phonons to discuss the nature of the pairing mechanism leading to superconductivity in layered mercury cuprates. The system is treated as an ionic solid containing layers of charge carriers and a model dielectric function is set up which fulfils the appropriate sum rules on the electronic and ionic polarizabilities. The static limit of the model dielectric function is used to calculate the effective hole-hole coupling strength. The values of the electron-phonon coupling strength and of the Coulomb interaction parameter indicate that the superconductor is in the strong coupling regime with effective screening of the charge carriers. The superconducting transition temperature of optimally doped HgBa2CuO4+δ is estimated as 120 K from Kresin's strong coupling theory and the energy gap ratio is substantially larger than the BCS value. The value of the isotope exponent is severely reduced below the BCS value. The implications of the model and its analysis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. N. Putilin, E. V. Antipov, O. Chimaissem, and M. Marezio, Nature 362, 226 (1993): J. L. Wagner, P. G. Radaelli, D. G. Hinks, J. D. Jorgensen, J. F. Mitchell, B. Dabrowski, G. S. Knapp, and M. A. Beno, Physica C 210, 447 (1993); I. Bryntse and S. N. Putilin, Physica C 212, 223 (1993).

    Google Scholar 

  2. L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, Phys. Rev. B 50, 4260 (1994).

    Google Scholar 

  3. A. Fukuoka, A. Tokiwa-Yamamoto, M. Itoh, R. Usami, S. Adachi, H. Yamauchi and K. Tanabe, Physica C265, 13 (1996).

    Google Scholar 

  4. J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  5. Y. T. Ren, H. Chang, Q. Xiong, Y. Q. Wang, Y. Y. Sun, R. L. Meng, Y. Y. Xue, and C. W. Chu, Physica C 217, 273 (1993).

    Google Scholar 

  6. N. H. Hur, H. G. Lee, J. H. Park, H. S. Shin, and I. S. Yang, Physica C 218, 365 (1993).

    Google Scholar 

  7. I. S. Yang, H. G. Lee, H. S. Shin, J. H. Park, S. I. Lee, and S. Lee, Physica C 222, 386 (1994).

    Google Scholar 

  8. X. Zhou, M. Cardona, C. W. Chu, Q. M. Lin, S. M. Loureiro, and M. Marezio, Phys. Rev. B 54, 6137 (1996); Physica C 270, 193 (1996).

    Google Scholar 

  9. M. C. Krantz, C. Thomsen, Hj. Mattausch, and M. Cardona, Phys. Rev. B 50, 1165 (1994).

    Google Scholar 

  10. V. Z. Kresin, Phys. Rev. B 35, 8716 (1987); J. Ruvalds, Phys. Rev. B 35, 8869 (1987); J. Ashkenzai, C. J. Kuper, and R. Tyk, Sol. State Commun. 63, 1145 (1987); S. S. Jha, Pramana 29, L615 (1987); A. Griffin, Phys. Rev. B 37, 5943 (1988); S. S. Jha and A. K. Rajagopal, Physica C 168, 173 (1990); R. Cote and A. Griffin, Phys. Rev. B 48, 10404 (1993).

    Google Scholar 

  11. H. Zhang, Y. Y. Wang, V. P. Dravid, J. L. Wagner, D. J. Hinks, and J. D. Jorgensen, Physica C 222, 1 (1994).

    Google Scholar 

  12. V. G. Hadjev, X. Zhou, T. Strohm, M. Cardona, Q. M. Lin, and C. W. Chu, Phys. Rev. B 58, 1043 (1998).

    Google Scholar 

  13. M. Tachiki and S. Takahashi, Phys. Rev. B 38, 218 (1988); Phys. Rev. B 39, 293 (1989).

    Google Scholar 

  14. C. Falter, M. Klenner, and G. A. Hoffmann, Phys. Rev. B 52, 3702 (1995).

    Google Scholar 

  15. A. Santoro, F. Beech, M. Marezio, and R. J. Cava, Physica C 156, 693 (1988).

    Google Scholar 

  16. D. Varshney and R. K. Singh, Phys. Rev. B 52, 7629 (1995).

    Google Scholar 

  17. A. Fetter, Ann. Phys. (N.Y). 81, 376 (1973); ibid. 88, 1 (1974).

    Google Scholar 

  18. R. Puznaik, R. Usami, K. Isawa, and H. Yamauchi, Phys. Rev. B 52, 3756 (1995).

    Google Scholar 

  19. V. Z. Kresin and H. Morawitz, Phys. Rev. B 37, 7854 (1988); H. Morawitz, I. Bozovic, V. Z. Kresin, G. Rietvald, and D. van der Marel, Z. F. Physik 93, 332 (1993).

    Google Scholar 

  20. G. D. Mahan and J. W. Wu, Phys. Rev. B 39, 851 (1989); G. D. Mahan, Many Particle Physics (Plenum Press, New York, 1981).

    Google Scholar 

  21. N. Bogolyubov, N. Tolmachev, and D. Shirkov,ANew Method in the Theory of Superconductivity (Cons. Bureau, New York 1959); I. M. Khalatnikov and A. A. Abrikosov, Adv. Phys. 8, 45 (1959); P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

    Google Scholar 

  22. D. R. Harshman, and A. P. Mills Jr., Phys. Rev. B 45, 10864 (1992).

    Google Scholar 

  23. B. F. Woodfield, C. W. Chu, R. A. Fisher, J. E. Gordon, S. B. Long, N. E. Phillips, and Q. Xiong, Physica C 235–240, 1741 (1994).

    Google Scholar 

  24. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Google Scholar 

  25. J. M. Bassat, P. Odier, and F. Gervais, Phys. Rev. B 35, 7126 (1987); Z. Schlesinger, R. T. Collins, M. Shefer, and E. M. Engler, Phys. Rev. B 36, 5275 (1987); G. Burns, F. H. Dacol, P. Freitas, W. Konig, and T. S. Plaskett, Phys. Rev. B 37, 5171 (1988); I. Bozobic, Phys. Rev. B 42, 1969 (1990).

    Google Scholar 

  26. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford Univ. Press, London, 1966).

    Google Scholar 

  27. Q. Huang, J. W. Lynn, Q. Xiong, and C. W. Chu, Phys. Rev. B 52, 462 (1995).

    Google Scholar 

  28. V. Z. Kresin, Phys. Lett. A 122, 434 (1987); V. Z. Kresin and S. A. Wolf, Phys. Rev. B 41, 4278 (1990).

    Google Scholar 

  29. V. Z. Kresin, Phys. Rev. B 46, 14883 (1992).

    Google Scholar 

  30. A. Bill, V. Z. Kresin, and S. A. Wolf in Pair Correlations in Many-Fermion Systems (Edited by V. Z. Kresin, Plenum Press, New York, 1998).

    Google Scholar 

  31. B. Geilikman and V. Kresin, Fiz. Tverd. Tela 7, 328 (1965) [Sov. Phys.–Solid State 265 (1966)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshney, D., Tosi, M.P. Plasmon–Phonon Pairing Mechanism and Superconducting State Parameters in Layered Mercury Cuprates. Journal of Superconductivity 13, 593–601 (2000). https://doi.org/10.1023/A:1007829018708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007829018708

Navigation