Skip to main content
Log in

Antithrombotic Activity of the Superoxide Dismutase Chondroitin Sulfate Complexes in a Rat Model of Arterial Injury

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Summary. Individual antithrombotic activities of superoxide dismutase (SOD) and sodium chondroitin sulfate (CHS) as well as the activities of covalent and noncovalent complexes of SOD with CHS were compared in a rat model of arterial thrombosis induced by ferrous chloride. Covalent conjugate of SOD with CHS exerted the most potent antithrombotic effect, which was associated with adsorption of the conjugate on the glycocalyx of the vascular wall cells and stability of the covalent bond between CHS and SOD subunits. Theoretical and practical directions in the investigation of SOD and CHS preparations are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Topol E. Novel antithrombotic approaches to coronary artery disease. Am J Cardiol 1995;75:27B–33B.

    Google Scholar 

  2. Rubanyi GM. The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol 1993;22(Suppl 4):S1–S14.

    Google Scholar 

  3. Becker RC. Thrombolytic agents and anticoagulants. Cardiovasc Drugs Ther 1993;7:825–828.

    Google Scholar 

  4. Folts JD. Drugs for the prevention of coronary thrombosis: From animal model to clinical trials. Cardiovasc Drugs Ther 1995;9:31–43.

    Google Scholar 

  5. Mehta JL, Nichols WW, Saldeen TGP, Chandna VK, Nicolini FA, Lawson DL, ter Riet MF. Superoxide dismutase decreases reperfusion arrhythmias and preserves myocardial function during thrombolysis with tissue plasminogen activator. J Cardiovasc Pharmacol 1990;16:112–120.

    Google Scholar 

  6. Berger HC, Frangakis CJ Jr. Neue Pharmazeutische Anwendung. DE 3715662 A1. 1987.

  7. Kumari R, Dikshit M, Srimal RC. Free radical scavenging mechanisms during pulmonary thromboembolism in rats. Thrombos Res 1993;69:101–111.

    Google Scholar 

  8. Young IS, Purvis JA, Lightbody JH, Adgey AA, Trimble ER. Lipid peroxidation and antioxidant status following thrombolytic therapy for acute myocardial infarction. Eur Heart J 1993;14:1027–1033.

    Google Scholar 

  9. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiology Rev 1994;74:139–162.

    Google Scholar 

  10. Sies H. Strategy of antioxidant defense. Eur J Biochem 1993;215:213–219.

    Google Scholar 

  11. Maksimenko AV. Modified preparations of superoxide dismutase and catalase to protect cardiovascular system and lungs. Uspekhi Sovremennoy biologii (in Russian) 1993;113:351–365.

    Google Scholar 

  12. Inoue M, Watanabe N, Matsuno K, Sasaki J, Tanaka Y, Hatanaka H, Amachi T. Expression of a hybrid Cu/Zn-superoxide dismutase which has high affinity for heparin-like proteoglycans on vascular endothelial cells. J Biol Chem 1991;266:16409–16414.

    Google Scholar 

  13. Karlsson K, Sandstrom J, Edlund A, Marklund SL. Turnover of extacellular superoxide dismutase in tissues. Lab Invest 1994;70:705–710.

    Google Scholar 

  14. Morrison LM, Schjeide OA. Coronary Heart Disease and the Mucopolysaccharides (Glycosaminoglycans). Springfield, IL: Charles C. Thomas, 1974.

    Google Scholar 

  15. Matsushima T, Nakashima Y, Sugano M, Tasaki H, Kuroiwa A, Koide O. Suppression of atherogenesis in hypercholesterolemic rabbits by chondroitin-6-sulfate. Artery 1987;14:316–337.

    Google Scholar 

  16. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–809.

    Google Scholar 

  17. Heyderman RS, Klein NJ, Shennan GI, Levin M. Reduction of the anticoagulant activity of glycosaminoglycans on the surface of the vascular endothelium by endotoxin and neutrophils: evaluation by an amidolytic assay. Thrombos Res 1992;87:677–685.

    Google Scholar 

  18. Bourin M-C, Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem J 1993;289:313–330.

    Google Scholar 

  19. Danon D, Skutelsky E. Endothelial surface charge and its possible relationship to thrombogenesis. Ann NY Acad Sci 1976;275:47–63.

    Google Scholar 

  20. Bianchini P. Therapeutic potential of non-heparin glycosaminoglycans of natural origin. Semin in Thrombos Hemostas 1989;15:365–369.

    Google Scholar 

  21. Badimon JJ, Fuster V, Chesebro JH, Badimon L. Coronary atherosclerosis. A multifactorial disease. Circulation 1993;87(Suppl II):II-3–II-16.

    Google Scholar 

  22. Lark MW, Yeo T-K, Mar H, Lara S. Hellstrom I, Hellstrom K-E, Wight TN. Arterial chondroitin sulfate proteoglycan: localization with a monoclonal antibody. J Histochem Cytochem 1988;36:1211–1221.

    Google Scholar 

  23. Simonyan MA. Interaction of superoxide dismutase with organic peroxides and superoxides generated from them. Biokhimiya (in Russian) 1984;49:1792–1798.

    Google Scholar 

  24. Maksimenko AV, Tischenko EG. Covalent modification of superoxide dismutase subunits by chondroitin sulfate. Biochemistry (Moscow) 1997;62:1359–1363 (in Russian), Engl transl: 62(10):1163–1166.

    Google Scholar 

  25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 1976;72:248–254.

    Google Scholar 

  26. Schumacher WA, Heran CL, Steinbacher TE, Youssef S, Ogletree ML. Superior activity of thromboxane receptor antagonist as compared with aspirin in rat models of arterial and venous thrombosis. J Cardiovasc Pharmacol 1993;22:526–533.

    Google Scholar 

  27. Elliott AE. Statistical Data Analysis for IBM PC and Compatible Computers. Texasoft Mission Technologies. Houston, Texas: Cedar Hill, 1990.

    Google Scholar 

  28. Schumacher WA, Heran CL, Steinbacher TE, Megill JR, Bird JE, Giancarli MR, Durham SK. Thrombin inhibition compared with other antithrombotic drugs in rats. Thromb Res 1992;68:157–166.

    Google Scholar 

  29. Broersma RJ, Kutcher LW, Heminger EF. The effect of thrombin inhibition in rat arterial thrombosis model. Thrombos Res 1991;64:405–412.

    Google Scholar 

  30. Halliwell B. Free radicals, antioxidants, and human disease: Curiosity, cause, or consequence? Lancet 1994;344:721–724.

    Google Scholar 

  31. Gutteridge JMC, Halliwell B. Reoxygenation injury and antioxidant protection: A tale of two paradoxes. Arch Biochem Biophys 1990;283:223–226.

    Google Scholar 

  32. Gebbink RK, Reynolds CH, Tollefsen DM, Mertens K, Pannekoek H. Specific glycosaminoglycans support the inhibition of thrombin by plasmin activator inhibitor 1. Biochemistry 1993;32:1675–1680.

    Google Scholar 

  33. Fernandes F, N'guyen P, Van Ryn J, Ofosu FA, Hirsh J, Buchanan MR. Hemorrhagic doses of heparin and other glycosaminoglycans induce a platelet defect. Thrombos Res 1986;43:491–495.

    Google Scholar 

  34. Edelberg JM, Weissler M, Pizzo SV. Kinetic analysis of the effect of glycosaminoglycans and lipoproteins on urokinase-mediated plasminogen activation. Biochem J 1991;276:785–791.

    Google Scholar 

  35. Maksimenko AV, Terentieva EL, Konovalova OYu, Torchilin VP. Interaction of chondroitin sulfate with enzymes. Ukranian Biochem J (in Russian) 1988;60:20–25.

    Google Scholar 

  36. Meng TT, Trachtenburg J, Ryan U, Abendschein DR. Potentiation of endogenous nitric oxide with superoxide dismutase inhibits platelet-mediated thrombosis in injured and stenotic arteries. J Am Coll Cardiol 1995;25:269–275.

    Google Scholar 

  37. Stralin P, Karlsson K, Johansson BO, Marklund SL. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 1995;15:2032–2036.

    Google Scholar 

  38. Adachi T, Yamada H, Yamada Y, Morichara N, Yamazaki N, Murakami T, Futenma A, Kato K, Hirano K. Substitution of glycine for arginine-213 in extracellular-superoxide dismutase impairs affinity for heparin and endothelial cell surface. Biochem J 1996;313:325–329.

    Google Scholar 

  39. Czarnowska E, Karwatowska-Prokopczuk E. Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart. Involvement of oxygen free radicals. Basic Res Cardiol 1995;90:357–364.

    Google Scholar 

  40. Bohm T, Geiger M, Binder BR. Isolation and characterization of tissue-type plasminogen activator-binding proteoglycans from human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 1996;16:665–672.

    Google Scholar 

  41. Tomaru T, Fujimori Y, Morita T, Aoki N, Sakamoto Y, Nakamura F, Omata M, Uchida Y. Local delivery of antithrombotic drug prevents restenosis after balloon angioplasty in atherosclerotic rabbit artery. Jpn Circ J 1996;60:981–992.

    Google Scholar 

  42. Berezin IV, Antonov VK, Martinek K, eds. Immobilized enzymes. Moscow: MSU (in Russian) 1976;1:224–228.

  43. Muronez VI, Nagradova NK. Immobilized Oligomeric Enzymes. Moscow: Nauka, 1984 (in Russian).

    Google Scholar 

  44. Ambrosio G, Weisfeldt ML, Jacobus WE, Flaherty JT. Evidence for a reversible oxygen radical-mediated component of reperfusion injury: Reduction by recombinant human superoxide dismutase administered at the time of reflow. Circulation 1987;75:282–291.

    Google Scholar 

  45. Chen LY, Nichols WW, Hendricks J, Mehta JL. Myocardial neutrophil infiltration, lipid peroxidation, and antioxidant activity after coronary artery thrombosis and thrombolysis. Am Heart J 1995;129:211–218.

    Google Scholar 

  46. Tanaka K, Seuishi K. The coagulation and fibrinolysis system and atherosclerosis. Lab Invest 1993;69:5–18.

    Google Scholar 

  47. Falk E, Fernandez-Ortiz A. Role of thrombosis in atherosclerosis and its complications. Am J Cardiol 1995;75:5B–11B.

    Google Scholar 

  48. David G, Danneels A, Duerr J, et al. Heparan sulfate proteoglycans. Essential co-factors in receptor-mediated process with relevance to the biology of the vascular wall. Atherosclerosis 1995;118(Suppl):67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimenko, A.V., Tischenko, E.G. & Golubykh, V.L. Antithrombotic Activity of the Superoxide Dismutase Chondroitin Sulfate Complexes in a Rat Model of Arterial Injury. Cardiovasc Drugs Ther 13, 479–484 (1999). https://doi.org/10.1023/A:1007815418082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007815418082

Navigation