Skip to main content

Hemoglobin genotypes of turbot (Scophthalmus maximus): consequences for growth and variations in optimal temperature for growth

Abstract

We studied the growth properties of three different hemoglobin genotypes of juvenile turbot (Scophthalmus maximus) reared at 10, 14, 18 and 22 °C. The genotype Hb-I(2/2) displayed the overall highest growth rate in the temperature range 14–22 °C, whereas no differences were found at sub-optimal temperature (10 °C). The differences in growth were largest at optimal temperatures where the Hb-I(2/2) genotype displayed 13% higher growth than the two other genotypes. Optimal temperature for growth (T opt.G) varied between the genotypes with the genotype Hb-I(2/2) displaying the highest T opt.G (23.0 °C) and Hb-I(1/1) the lowest (19.0 °C). The biological significance of this link between biochemical genetic variation and physiological properties might be influences on growth pattern, ultimate size and age at first maturity. This is the first reported quantitative trait locus (QTL) for this species.

This is a preview of subscription content, access via your institution.

References

  • Brix, O., Forås, E. and Strand, I. 1997. Genetic variation and functional properties of Atlantic cod hemoglobins: Introducing a modified tonometric method for studying fragile hemoglobins. Comp. Biochem. Physiol. 119A: 575–583.

    Google Scholar 

  • Burel, C., Person-Le Ruyet, J., Gaumet, F., Le Roux, A, Sévère, A. and Boeuf, F. 1996. Effects of temperature on growth and metabilism in juvenile turbot. J. Fish Biol. 49: 678–692.

    Google Scholar 

  • Chambers, R.C. and Miller, T.J. 1995. Evaluating fish growth by means of otolith increment analysis: special properties of individual-level longitudinal data. In : Recent Developments in Fish Otolith Research. pp. 155–175. Edited by D.H. Secor, J.M. Dean, and S.E. Campana, S.E ). University of South Carolina Press, Colombia, South Carolina.

    Google Scholar 

  • Déniel, C. 1990. Comparative study of growth of flatfishes on the west coast of Brittany. J. Fish Biol. 37: 149–166.

    Google Scholar 

  • Falconer, D.S. 1989. Introduction to Quantitative Genetics, 3rd edition. Longman Scientific and Technical, Essex, UK.

    Google Scholar 

  • Forsberg, O.I. 1995. Empirical investigations on growth of postsmolt Atlantic salmon (Salmo salar L.) in land-based farms. Evidence of a photoperiodic influence. Aquaculture 133: 235–248.

    Google Scholar 

  • Gjerde, B., Røer, J.E., Lein, I., Stoss, J. and Refstie, T. 1997. Heritability for body weight in farmed turbot. Aquac. Int. 5: 175–178.

    Google Scholar 

  • Glover, K., Nyhammer, G., Nævdal, G., Otterlei, E. and Thorkilsen, S. 1997. Studies on genotype dependent growth in juvenile cod (Gadus morhua ) reared at different temperatures and light regimes. Dept. Fish. Mar. Biol. Report. Ser. 1997(8), 13 pp.

  • Hintze, J.L. 1996. PASS users guide. NCSS, Kaysville, Utah.

    Google Scholar 

  • Iglesias, J. and Rodríguez-Ojea, G. 1994. Fitness of hatchery-reared turbot, Scophthalmus maximus L., for survival in the sea: first year results on feeding, growth and distribution. Aquac. Fish. Manag. 25, 179–188.

    Google Scholar 

  • Imsland, A.K. 1999. Sexual maturation in turbot (Scophthalmus maximus ) is related to genotypic oxygen affinity: experimental support to Pauly's (1984) juvenile-to-adult transition hypothesis. ICES J. Mar. Sci. 56: 320–325.

    Google Scholar 

  • Imsland, A.K., Scanu, G. and Nævdal, G. 1996b. New variants of the hemoglobin of turbot: possible use in aquaculture and population genetics studies. Int. Counc. Explor. Sea. CM. F: 14.

  • Imsland, A.K., Sunde, L.M, Folkvord, A. and Stefansson, S.O. 1996b. The interaction between temperature and size on growth of juvenile turbot (Scophthalmus maximus Rafinesque). J. Fish Biol. 49: 926–940.

    Google Scholar 

  • Imsland, A.K., Brix, O., Nævdal, G. and Samuelsen, E.N. 1997a. Hemoglobin genotypes in turbot (Scophthalmus maximus Rafinesque), their oxygen affinity properties and relation with growth. Comp. Biochem. Physiol. 116A: 157–165.

    Google Scholar 

  • Imsland, A. K., Folkvord, A., Grung, G. L., Stefansson, S. O. and Taranger, G. L. 1997b. Sexual dimorphism in growth and maturation of turbot, Scophthalmus maximus (Rafinesque 1810). Aquac. Res. 28: 101–114.

    Google Scholar 

  • Imsland, A.K., Nilsen, T. and Folkvord, A. 1998. Stochastic simulation of size-variation in turbot: possible causes analysed with an individual based model. J. Fish Biol. 53: 237–258.

    Google Scholar 

  • Jørstad, K.E. 1984. Genetic analyses of cod in northern Norway. In : The Propagation of Cod Gadus morhua L. Edited by E. Dahl, D.S. Danielsen, E. Moksness, and P. Solemdal. Flødevigen Rapportserie 1: 745–760.

  • Jørstad, K.E. and Nævdal, G. 1994. Studies on associations between genotypes and growth rate in juvenile cod. ICES Mar. Sci. Symp. 198: 671–675.

    Google Scholar 

  • Karpov, A.K. and Novikov, G.G. 1980. Hemoglobin alloforms in cod, Gadhus morhua (Gadiformes, Gadidae ), their functional characteristics and occurrence in populations. J. Ichthyol. 20: 45–50.

    Google Scholar 

  • Leclercq, D. 1994. Turbot broodstock management: a key point to mid-term progress of the turbot industry. In : Turbot Culture: Problems and Prospects. pp. 3–13. Edited by P. Lavens, and R.A.M. Remmerswaal. European Aquaculture Society, Oostende, Belgium.

    Google Scholar 

  • Manwell, C. and Baker, C.M.A. 1967. Polymorphism of turbot hemoglobin: a 'hybrid' hemoglobin molecule with three kinds of polypeptide chains. Am. Zool. 7: 214.

    Google Scholar 

  • Manwell, C. and Baker, C.M.A. 1970. Polymorphism of hemoglobin in turbot. In : Molecular Biology and the Orign of Species.-Heterosis.-Protein Polymorphism and Animal Breeding. pp. 196–200. Edited by C. Manwell, and C.M.A. Baker. Sigdewick and Jackson, London.

    Google Scholar 

  • Mork, J., Giskeødegård, R. and Sundnes, G. 1984a. Population genetic studies in cod (Gadus morhua L.) by means of the haemoglobin polymorphism; observation in a Norwegian coastal population. FiskDir. Skr. Ser. HavUnders. 17: 449–471.

    Google Scholar 

  • Mork, J., Giskeødegård, R. and Sundnes, G. 1984b. The haemoglobin polymorphism in Atlantic cod (Gadus morhua L.): Genotype differences in somatic growth and in maturing age in natural population. In : The Propagation of Cod Gadus morhua L. Edited by E. Dahl, D.S. Danielsen, E. Moksness, and P. Solemdal. Flødevigen rapportserie 1: 721–732.

  • Nævdal, G., Folkvord, A., Otterlei, E. and Thorkildsen, S. 1992. Growth rate related to genotype of 0-group cod at three environmental temperatures. Sarsia 77: 71–73.

    Google Scholar 

  • Policansky, D. 1983. Size, age and demography of metamorphosis and sexual maturation in fishes. Am. Zool. 23: 57–63.

    Google Scholar 

  • Rosenberg, A.A. and Haugen, A.S. 1982. Individual growth and size-selective mortality of larval turbot (Scophthalmus maximus ) reared in enclosures. Mar. Biol. 72: 73–77.

    Google Scholar 

  • Rowe, D. K., Thorpe, J. E. and Shanks, A. M. 1991. Role of fat stores in the maturation of male Atlantic salmon (Salmo salar ) parr. Can. J. Fish. Aquat. Sci. 48: 405–413.

    Google Scholar 

  • Samuelsen, E.N., Imsland, A.K. and Brix, O. 1999. Oxygen binding properties of three different hemoglobin genotypes in turbot, Scophthalmus maximus Rafinesque. Fish Physiol. Biochem. 20: 135–141.

    Google Scholar 

  • Smith, P., Jamieson, A. and Birley, A.J. 1990. Electrophoretic studies and the stock concept in marine teleost. J. Cons. Int. Explor. Mer 47: 231–245.

    Google Scholar 

  • Smithies, O. 1959. An improved procedure for starch-gel electrophoresis: further variants in the serum proteins of normal individuals. Biochem. J. 71: 585.

    Google Scholar 

  • Thorpe, J. E. 1989. Development variation in salmonid populations. J. Fish Biol. 35: 295–303.

    Google Scholar 

  • Torrissen, K.R. 1991. Genetic variation in growth rate of Atlantic salmon with different trypsin-like isozyme patterns. Aquaculture 93: 299–312.

    Google Scholar 

  • Torrissen, K.R. and Shearer, K.D. 1992. Protein digestion, growth and food conversion in Atlantic salmon and Arctic charr with different trypsin-like isozyme pattterns. J. Fish Biol. 41: 409–415.

    Google Scholar 

  • Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall Inc., Englewood Cliffs.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Imsland, A., Foss, A., Stefansson, S. et al. Hemoglobin genotypes of turbot (Scophthalmus maximus): consequences for growth and variations in optimal temperature for growth. Fish Physiology and Biochemistry 23, 75–81 (2000). https://doi.org/10.1023/A:1007815402911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007815402911

  • genotypic growth
  • hemoglobin genotypes
  • optimal temperature
  • quantitative trait locus (QTL)