Skip to main content

Highly Sensitive Electrometers Based on Single Cooper Pair Tunneling

Abstract

A superconducting transistor structure comprising two Josephson tunnel junctions connected in series and a small island in between, which is capacitively coupled to a gate, is considered. When self-capacitances of the junctions are sufficiently small that the corresponding charging energy E c is of the order of magnitude of the Josephson coupling strength E J (and both are ≫k B T), the interplay of the charging and Josephson effects in the circuit becomes essential. This leads to a characteristic IV curve which can be effectively modulated by the gate in two limit cases of external electrodynamic impedance Z s (ω): (a) Z s = R s R Q ≈ 6.5 kΩ and (b) R s R Q . Both circuits can serve as electrometers which are competitive with traditional single-electron devices. Preliminary experimental results are discussed.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    H. Grabert and M. H. Devoret, eds., Single Charge Tunneling. Coulomb Blockade Phenomena in Nanostructures, NATO ASI Series. Series B: Physics, 294 (Plenum Press, New York, 1992).

    Google Scholar 

  2. 2.

    T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).

    PubMed  Google Scholar 

  3. 3.

    A. N. Korotkov, D. V. Averin, K. K. Likharev, and S. A. Vasenko, in Single Electron Tunneling and Mesoscopic Devices, H. Koch and H. Lübbig, eds. Berlin, (Springer-Verlag, 1992).

    Google Scholar 

  4. 4.

    B. Starmark, P. Delsing, D. B. Haviland, and T. Claeson, in 6th Int. Superconductive Electronics Conf., 25–28 June 1997, Berlin, Germany, H. Koch and S. Knappe, eds., 2, 391.

  5. 5.

    E. H. Visscher, S. M. Verbrugh, J. Lindeman, P. Hadley, J. E. Mooij, and W. van der Vleuten, Appl. Phys. Lett. 68, 2014 (1996); J. Pettersson, P. Wahlgren, P. Delsing, N. Rorsman, D. B. Haviland, H. Zirath, and T. Claeson, Phys. Rev. B, 53, R13272 (1996).

    Google Scholar 

  6. 6.

    R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnokov, P. Delsing, and D. E. Prober, Science 280, 1238 (1998).

    PubMed  Google Scholar 

  7. 7.

    A. B. Zorin, Phys. Rev. Lett. 76, 4408 (1996).

    PubMed  Google Scholar 

  8. 8.

    A. B. Zorin, IEEE Trans. Instrum. Means. 46, 299 (1997).

    Google Scholar 

  9. 9.

    A. B. Zorin, Yu. A. Pashkin, V. A. Krupenin, and H. Scherer, in 6th Int. Superconductive Electronics Conf., 25–28 June 1997, Berlin, Germany, H. Koch and S. Knappe, eds., 2, 394.

    Google Scholar 

  10. 10.

    A. B. Zorin, L. S. Kuzmin, and K. K. Likharev, Physica B 165, 166, 933 (1990).

    Google Scholar 

  11. 11.

    D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 69, 1993 (1992); M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992).

    PubMed  Google Scholar 

  12. 12.

    P. Joyez, Ph.D. thesis, University of Paris 6 (1995).

  13. 13.

    K. K. Likharev and A. B. Zorin, J. Low Temp. Phys. 59, 347 (1985).

    Google Scholar 

  14. 14.

    This condition becomes more severe in the limit E J/E C < 1, because the forbidden energy gap (∼E J) shrinks and the probability of transitions into upper bands rises steeply; for details, see A. D. Zaikin and D. S. Golubev, Phys. Lett. A 164, 337 (1992).

    Google Scholar 

  15. 15.

    D. B. Haviland, Yu. A. Pashkin, and L. S. Kuzmin, Physica B 203, 347 (1994).

    Google Scholar 

  16. 16.

    A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).

    Google Scholar 

  17. 17.

    H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

    Google Scholar 

  18. 18.

    V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969); A. N. Vystavkin, V. N. Gubankov, L. S. Kuzmin, K. K. Likharev, V. V. Migulin, and V. K. Semenov, Rev. Phys. Appl. 9, 79 (1974).

    Google Scholar 

  19. 19.

    K. K. Likharev and V. K. Semenov, JETP Lett. 15, 442 (1972).

    Google Scholar 

  20. 20.

    R. H. Koch, D. J. Van Harlingen, and J. Clarke, Phys. Rev. Lett. 45, 2132 (1980).

    Google Scholar 

  21. 21.

    P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 72, 2458 (1994).

    PubMed  Google Scholar 

  22. 22.

    T. M. Eiles and J. M. Martinis, Phys. Rev. B 50, 627 (1994).

    Google Scholar 

  23. 23.

    D. Vion, M. Götz, P. Joyez, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 77, 3435 (1996); see also V. Bouchiat, Ph.D. thesis, University of Paris 6, 1997.

    PubMed  Google Scholar 

  24. 24.

    K. K. Likharev, Physics Department, Moscow State University, Moscow, Preprint 29, 1986; see also K. A. Matveev, M. Gisselfät, L. I. Glazman, M. Jonson, and R. I. Shekhter, Phys. Rev. Lett. 70, 2940 (1993).

  25. 25.

    D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, B. L. Altshuler, P. A. Lee, and R. A. Webb, eds. (Elsevier, Amsterdam, 1991).

    Google Scholar 

  26. 26.

    K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon & Breach, New York, 1986).

    Google Scholar 

  27. 27.

    Note that a self-inductance of the on-chip shunt can be easily made much smaller than the characteristic Josephson inductance = Φ0/2π Ic, so that the former plays no role in the dynamics of φ.

  28. 28.

    P. Walgren, P. Delsing, and D. B. Haviland, Phys. Rev. B 52, R2293 (1995).

    Google Scholar 

  29. 29.

    M. L. Roukes, M. R. Freeman, R. S. Germain, R. C. Richardson, and M. B. Ketchen, Phys. Rev. Lett. 55, 422 (1985).

    PubMed  Google Scholar 

  30. 30.

    A. Amar, D. Song, C. J. Lobb, and F. C. Wellstood, IEEE Trans. Appl. Supercond. 7, 3544 (1997).

    Google Scholar 

  31. 31.

    This effect is most pronounced at E J/E C∑ < 1, as can be seen in Fig. 2 of [21].

  32. 32.

    R. L. Kautz, G. Zimmerli, and J. M. Martinis, J. Appl. Phys. 73, 2386 (1993).

    Google Scholar 

  33. 33.

    L. S. Kuzmin, Yu. A. Pashkin, A. B. Zorin, and T. Claeson, Physica B 203, 376 (1994).

    Google Scholar 

  34. 34.

    F. C. Wellstood, C. Urbina, and J. Clarke, Phys. Rev. B 49, 5942 (1994).

    Google Scholar 

  35. 35.

    A. H. Steinbach, J. M. Martinis, and M. H. Devoret, Phys. Rev. Lett. 76, 3806 (1996).

    PubMed  Google Scholar 

  36. 36.

    R. J. Schoelkopf, P. J. Burke, A. A. Kozhevnokov, D. E. Prober, and M. J. Rooks, Phys. Rev. Lett. 78, 3370 (1997).

    Google Scholar 

  37. 37.

    A. B. Zorin, F.-J. Ahlers, J. Niemeyer, T. Weimann, H. Wolf, V. A. Krupenin, and S. V. Lotkhov, Phys. Rev. B 53, 13,682 (1996).

    Google Scholar 

  38. 38.

    V. Bouchiat, G. Chardin, M. H. Devoret, and D. Esteve, Hyperfine Interactions (J. C. Balzer AG, Science Publishers 109, 345 (1997).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zorin, A.B., Lotkhov, S.V., Pashkin, Y.A. et al. Highly Sensitive Electrometers Based on Single Cooper Pair Tunneling. Journal of Superconductivity 12, 747–755 (1999). https://doi.org/10.1023/A:1007780925567

Download citation

  • Coulomb and Josephson effects
  • thermal and quantum fluctuations
  • ultrasmall tunnel junctions