Skip to main content
Log in

Control of phosphorus homeostasis of Atlantic salmon (Salmo salar) in fresh water

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Studies were conducted to determine the absorption, excretion and requirement of dietary phosphorus (P) by Atlantic salmon (Salmo salar). Triplicate groups of salmon parr, initial weight 15 ± 0.5±g , were fed, diets containing 4, 5, 6, 7, 8, 9, 11 and 13 mg P and 20 KJ of digestible energy (DE) per±g of diet (dry matter basis, DMB) to satiation for 16 weeks. The basal diet containing 4 mg P g-1 (0.15 mg available P per KJ DE) was supplemented with graded levels of calcium phosphate, Ca(H2PO4)2⋅H2O to formulate the eight experimental diets. The fish were reared in fresh water at a temperature of 15 °C on a 12 h photoperiod. Vertebrae ash increased from 316 to 516 mg g-1 fat-free dry matter with an increase in dietary P content. P requirement was estimated by using a four-parameter sigmoidal equation. The data suggests that a diet of 0.28 mg available P per KJ DE is needed for Atlantic salmon. Phosphate and calcium levels in plasma and bone increased, whereas levels of magnesium and liver cholecalciferol decreased, with an increase in dietary P.

Phosphate excretion in urine and apparent availability of P were determined in deficient and replete fish. In deficient fish, the urine phosphate concentration was 0.10 mmol L-1 before feeding and 0.25 mmol l-1 after feeding, whereas in replete fish these concentrations were 1.09 and 5.11 mmol l-1, respectively. The increase in urine phosphate concentration was higher in replete fish than in deficient fish, however, the apparent absorption of P was found to be significantly lower in replete fish than in deficient fish. These results suggest that similarly to terrestrial vertebrates, P homeostasis in Atlantic salmon is controlled by absorption in the intestine, conservation in the kidney and storage in the bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, J.W., Murai, T. and Campbell, C. 1973. Effects of dietary calcium and phosphorus on growth, food conversion, bone ash and hematocrit levels of catfish. J. Nutr. 103: 766–771.

    PubMed  Google Scholar 

  • Andrews, J.W., Murai, T. and Page, J.W. 1980. Effects of dietary cholecalciferol and ergocalciferol on channel catfish. Aquaculture 19: 49–54.

    Article  Google Scholar 

  • AOAC 1984. Official Methods of Analysis of AOAC International, 14th Edn., Arlington, VA.

  • Arthur, D. 1970. The determination of chromium in animal feed and excreta by atomic absorption spectrophotometry. Can. Spectr. Nov. 15: 136–140.

    Google Scholar 

  • Åsgård, T. and Shearer, K. 1997. The dietary phosphorus requirement of juvenile Atlantic salmon (Salmo salar). Aquacult. Nutr. 3: 17–23.

    Article  Google Scholar 

  • Austreng, E. 1978. Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture 13: 265–272.

    Article  Google Scholar 

  • Baker, D.H. 1986. Problems and pitfalls in animal experiments designed to establish dietary requirements for essential nutrients. J. Nutr. 116: 2339–2349.

    PubMed  Google Scholar 

  • Barnett, B.J., Cho, C.Y. and Slinger, S.J. 1982. Relative biopotency of dietary ergocalciferol and cholecalciferol and the role of and requirement for vitamin D in rainbow trout (Salmo gairdneri). J. Nutr. 112: 2011–2019.

    PubMed  Google Scholar 

  • Brett, J.R. and Groves, T.D.D. 1979. Physiological energetics. In Fish Physiology, Vol. VIII. Bioenergetics and Growth. pp. 279–352. Edited by W.S. Hoar, D.J. Randall and J.R. Brett. Academic Press, Orlando.

    Google Scholar 

  • Breves, G. and Schröder, B. 1991. Comparative aspects of gastrointestinal phosphorus metabolism. Nutr. Rev. 4: 125–140.

    Google Scholar 

  • Brown, P.B. and Robinson, E.H. 1992. Vitamin D studies with channel catfish (Ictalurus punctatus) reared in calcium-free water. Comp. Biochem. Physiol. 103A: 213–219.

    Google Scholar 

  • Brown, M.L., Jaramillo, Jr. F. and Gatlin, D.M. 1993. Dietary phosphorus requirement of juvenile sunshine bass, Morone chrysops x M. saxatilis. Aquaculture 113: 355–363.

    Article  Google Scholar 

  • Cho, C.Y. 1992. Feeding systems for rainbow trout and other salmonids with reference to current estimates of energy and protein requirements. Aquaculture 100: 107–123.

    Article  Google Scholar 

  • Cross, H.S., Debiec, H. and Peterlik, M. 1990. Mechanism and regulation of intestinal phosphate absorption. Miner. Electrolyte Metab. 16: 115–124.

    PubMed  Google Scholar 

  • Curtis, B.J. and Wood, C.M. 1991. The function of the urinary bladder in Vivo in the freswater rainbow trout. J. Exp. Biol. 155: 567–183.

    Google Scholar 

  • Dougall, D.S., Woods III, L.R., Douglass, L.W. and Soares, J.H. 1996. Dietary phosphorus requirement of juvenile striped bass Morone saxatilis. J. World Aquacult. Soc. 27: 82–91.

    Google Scholar 

  • Fenwick, J.C., Smith, K., Smith, J. and Flik, G. 1984. Effect of various vitamin D analogs on plasma calcium and phosphorus and intestinal calcium absorption in fed and unfed American eels, Anguilla rostrata. Gen. Comp. Endocrinol. 55: 398–404.

    PubMed  Google Scholar 

  • Fenwick, J.C. and Vermette, M.G. 1989. Vitamin D3 and the renal handling of phosphate in American eels. Fish Physiol. Biochem. 7: 351–358.

    Google Scholar 

  • Fenwick, J.C., Davosin, W. and Forster, M.E. 1994. In vivo calcitropic effect of some vitamin D compounds in the marine Antarctic teleost, Pagothenia bernacchii. Fish Physiol. Biochem. 12: 479–484.

    Google Scholar 

  • Hardwick, L.L., Jones, M.R., Brautbar, N. and Lee, D.B.N. 1991. Magnesium absorption: mechanisms and the influence of vitamin D, calcium and phosphate. J. Nutr. 121: 13–23.

    PubMed  Google Scholar 

  • Hardy, R.W. and Shearer, K.D. 1985. Effect of dietary calcium phosphate and zinc supplementation on whole body zinc concentration of rainbow trout (Salmo gairdneri). Can. J. Fish. Aq. Sci. 42: 181–184.

    Google Scholar 

  • Kaune, R. and Hentschel, H. 1987. Stimulation of renal phosphate secretion in the stenohaline freshwater teleost: Carassius auratus gibelio Bloch. Comp. Biochem. Physiol. 87A: 359–362.

    Article  Google Scholar 

  • Ketaren, P.P., Batterham, E.S., White, E., Farrell, D.J. and Milthorpe, B.K. 1993. Phosphorus studies in pigs. 1. Available phosphorus requirements of grower/finisher pigs. Br. J. Nutr. 70: 249–268.

    PubMed  Google Scholar 

  • Ketola, H.G. 1975. Mineral supplementation of diets containing soybean meal as a source of protein for rainbow trout. The Progr. Fish-Cult. 37: 73–75.

    Google Scholar 

  • Ketola, H.G. and Richmond, M.E. 1994. Requirement of rainbow trout for dietary phosphorus and its relationship to the amount discharged in hatchery effluents. Trans. Am. Fish. Soc. 123: 587–594.

    Article  Google Scholar 

  • Lall, S.P. and Bishop, F.J. 1977. Studies on mineral and protein utilization by Atlantic salmon (Salmo salar) grown in sea water. Fish. Mar. Serv. Tech. Rep. 688: 1–16.

    Google Scholar 

  • Lall, S.P. 1989. The Minerals. In Fish Nutrition. pp. 219–257. Edited by J.E. Halver. Academic Press, New York.

    Google Scholar 

  • Larsson, D., Björnsson, B.Th. and Sundell, K. 1995. Physiological concentrations of 24,25-dihydroxyvitamin D3 rapidly decrease the in vitro calcium uptake in the Atlantic cod, Gadus morhua. Gen. Comp. Endocrinol. 100: 211–217.

    Article  PubMed  Google Scholar 

  • Lawson, E. 1985. Vitamin D. In Fat-soluble Vitamins. Their Biochemistry and Applications. pp. 76–153. Edited by A.T. Diplock. Heinemann, London.

    Google Scholar 

  • Mattila, P., Piironen, V., Bäckman, C., Asunmaa, A., Uusi-Rauva, E. and Koivistoinen, P. 1992. Determination of vitamin D3 in egg yolk by high-performance liquid chromatography with diode array detection. J. Food Comp. Anal. 5: 581–290.

    Google Scholar 

  • Mattila, P., Piironen, V, Uusi-Rauva, E. and Koivistoinen, P. 1995. Cholecalciferol and 25-hydroxycholecalciferol contents in fish and fish products. J. Food Comp. Anal. 8: 232–243.

    Article  Google Scholar 

  • Mercer, L.P. 1992. The determination of nutritional requirements: mathematical modeling of nutrient-response curve. J. Nutr. 122: 706–708.

    PubMed  Google Scholar 

  • Morgan, P.H., Mercer, L.P. and Flodin, N.W. 1975. General model for nutritional responses of higher organisms. Proc. Nat. Acad. Sci. USA 72: 4327–4331.

    PubMed  Google Scholar 

  • Nakamura, Y. 1982. Effects of dietary phosphorus and calcium contents on the absorption of phosphorus in the digestive tract of carp. Bull. Jap. Soc. Sci. Fish. 48: 409–413.

    Google Scholar 

  • NRC 1993. Nutrient Requirements of Fish. National Academic Press, Washington, DC.

    Google Scholar 

  • Ogino, C. and Takeda, H. 1978. Requirements of rainbow trout for dietary calcium and phosphorus. Bull. Jap. Soc. Fish. Sci. 44: 1019–1022.

    Google Scholar 

  • Ogino, C., Takeuchi, L., Takeda, H. and Watanabe, T. 1979. Availability of dietary phosphorus in carp and rainbow trout. Bull. Jap. Soc. Fish. Sci. 45: 1527–1532.

    Google Scholar 

  • Porn-Ngam, N., Satoh, S., Takeuchi, T. and Watanabe, T. 1993. Effect of the ratio of phosphorus to calcium on zinc availability to rainbow trout in high phosphorus diet. Nippon Suisan Gakkaishi 59: 2065–2070.

    Google Scholar 

  • Ratkowsky, D.A. 1990. Handbook of Nonlinear Regression Models. Marcel Dekker, New York.

    Google Scholar 

  • Ravindran, V., Kornegay, E.T., Potter, L.M., Ogunabameru, B.O., Welten, M.K., Wilson, J.H. and Potchanakorn, M. 1995. An evaluation of various response criteria in assessing biological availability of phosphorus for broilers. Poultry Sci. 74: 1820–1830.

    Google Scholar 

  • Robbins, K.R., Norton, H.W. and Baker, D.H. 1979. Estimation of nutrient requirements from growth data. J. Nutr. 109: 1710–1714.

    PubMed  Google Scholar 

  • Robinson, E.H., Rawles, S.D., Brown, P.B., Yette, H.E. and Greene, W. 1986. Dietary calcium requirement of channel catfish, Ictalurus punctatus, reared in calcium-free water. Aquaculture 53: 263–270.

    Article  Google Scholar 

  • Rodehutscord M. 1996. Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 200 g to supplements of dibasic sodium phosphate in a semipurified diet. J. Nutr. 126: 324–31.

    PubMed  Google Scholar 

  • Satoh, S., Izume, K., Takeuchi, T. and Watanabe, T. 1992. Effect of supplemental tricalcium phosphate on zinc and manganese availability to common carp. Nippon Suisan Gakkaishi 58: 539–545.

    Google Scholar 

  • Satoh, S., Porn-Ngam, N., Takeuchi, T. and Watanabe, T. 1993. Effect of various types of phosphates on zinc availability to rainbow trout. Nippon Suisan Gakkaishi 59: 1395–1400.

    Google Scholar 

  • Shearer, K.D., Maage, A., Opstvedt, J. and Mundheim, H. 1992. Effect of high-ash diets on growth, feed efficiency, and zinc status of juvenile Atlantic salmon (Salmo salar). Aquaculture 106: 345–355.

    Article  Google Scholar 

  • Shearer, K.D. and Åsgård, T. 1992. The effect of water-borne magnesium on the dietary magnesium requirement of the rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 9: 387–392.

    Google Scholar 

  • Soares Jr., J.H. 1995. Phosphorus bioavailability. In Bioavailability of Nutrients for Animals. Amino acids, Minerals, and Vitamins. pp. 257–294. Edited by C.B. Ammerman, D.H. Baker and A.J. Lewis. Academic Press, San Diego.

    Google Scholar 

  • Swarup, K., Norman, A.W., Srivastav, A.K. and Srivastav, S.P. 1984. Dose-dependent vitamin D3 and 1,25-dihydrxyvitamin D3 induced hypercalcemia and hyper-phosphatemia in male catfish Clarias batrachus. Comp. Biochem. Physiol. 78B: 553–555.

    Google Scholar 

  • Swarup, K., Das, V.K. and Norman, A.W. 1991. Dose-dependent vitamin D3 and 1,25-dihydrxyvitamin D3 induced hypercalcemia and hyperphosphatemia in male cyprinoid Cyprinus carpio. Comp. Biochem. Physiol. 100A: 445–447.

    Article  Google Scholar 

  • Takeuchi, A., Okano, T., Torii, M., Hatanaka, Y. and Kobayashi, T. 1987. Comparative studies on the contents of vitamin D3, 25-hydroxy vitamin D3 and 7-dehydroxycholesterol in fish liver. Comp. Biochem. Physiol. 88B: 569–573.

    Google Scholar 

  • Taussky, H.H. and Shorr, E. 1953. A microcolorimetric method for the determination of inorganic phosphorus. J. Biol. Chem. 202: 675–685.

    PubMed  Google Scholar 

  • Vielma, J. and Lall, S.P. 1998. Phosphorus utilization by Atlantic salmon (Salmo salar) reared in freshwater is not influenced by higher dietary calcium intake. Aquaculture 160: 117–128.

    Article  Google Scholar 

  • Wagner, G.F., Milliken, C., Friesen, H.G. and Copp, D.H. 1991. Studies on the regulation and characterization of plasma stanniocalcin in rainbow trout. Mol. Cell. Endocrinol. 79: 129–138.

    Article  PubMed  Google Scholar 

  • Wagner, G.F., Niu, P.D., Jaworski, E., Radman, D. and Chiarot, C. 1997. Development of a dose-response bioassay for stanniocalcin in fish. Mol. Cell. Endocrinol. 128: 19–28.

    Article  PubMed  Google Scholar 

  • Watanabe, T., Murakami, A., Takeuchi, L., Nose, T. and Ogino, C. 1980. Requirement of chum salmon held in freshwater for dietary phosphorus. Bull. Jap. Soc. Fish. Sci. 46: 361–367.

    Google Scholar 

  • Wilson, R.P., Robinson, E.H., Gatlin, D.M. and Poe, W.E. 1982. Dietary phosphorus requirement of channel catfish. J. Nutr. 112: 1197–1202.

    PubMed  Google Scholar 

  • Wood, C.M. and Patrick, M.L. 1994. Methods for assessing kidney and urinary bladder function in fish. In Biochemistry and Molecular Biology of Fishes. Vol 3, Analytical Techniques. pp. 127–143. Edited by P.W. Hochachka and T.P. Mommsen. Elsevier, Amsterdam.

    Google Scholar 

  • Wood, R.J. and Serfaty-Lacrosniere, C. 1992. Gastric acidity, atrophic gastritis, and calcium absorption. Nutr. Rev. 50: 33–40.

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vielma, J., Lall, S. Control of phosphorus homeostasis of Atlantic salmon (Salmo salar) in fresh water. Fish Physiology and Biochemistry 19, 83–93 (1998). https://doi.org/10.1023/A:1007757321695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007757321695

Navigation