Skip to main content
Log in

Determination of the Intragrain Critical Current Density and Thermogravimetric Analysis on YBCO/Ag Superconductors Irradiated with 60Co Gamma Rays

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

We investigated the flux pinning behavior induced by gamma irradiation in Y1Ba2Cu3O(7−x) silver-added samples. The superconductors were prepared through solid-state route and added with silver in amounts of 0-, 6.5-, and 20-wt%, following which the samples were irradiated by high-energy gamma irradiation (γ) at doses of 0, 500, and 1500 kGy at the dosage rate of 8.2 kGy/h. We performed magnetization loops to study the flux pinning of vortex in YBCO/Ag superconductors. We found that silver addition and irradiation on superconductors may increase the width in magnetization loops, which is related to the enhancement in the critical current density, J c . We established that an interaction between silver addition and irradiation that results in higher values in J c for YBCO/Ag irradiated samples already exists. The J c in samples containing 20-wt% of silver decreased with irradiation because a higher content of silver produces small crystals and secondary phases growing. On comparing the TGA analysis for both YBCO and YBCO/Ag samples, we found higher-weight oxygen losses in YBCO silver samples, which suggests that silver increases the oxygen saturation content. The higher oxygen content found on irradiated specimens it is indicative of oxygen losses from CuO chains or CuO2 planes reached by γ-irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).

    PubMed  Google Scholar 

  2. H. Maeda, Y. Tanaka, M. Fuksutumi, and T. Asano, Jpn. J. Appl. Phys, 27, L209 (1988).

    Google Scholar 

  3. Z. Z. Sheng and A. M. Hermann, Nature, 332, 138 (1988).

    Google Scholar 

  4. S. N. Putilin, E. V. Antipov, O. Chmaissem, and M. Marezzio, Nature, 362, 226 (1993).

    Google Scholar 

  5. N. Wu, H. H. Zern, and Ch. Chen, Physica C 241, 198 (1995).

    Google Scholar 

  6. T. S. Orlova, J. Y. Lava, A. Dubon, C. Nguyen-van-Huong, B. I. Smirnov, and Y. P. Sepanov, Supercond. Sci. Technol. 11, 467 (1998).

    Google Scholar 

  7. D. Behera, N. C. Mishra, and K. Patnaik, J. Supercon. 10, 27 (1997).

    Google Scholar 

  8. R. Rangel, D. H. Galván, G. Hirata, E. Adem, F. Morales, and M. B. Maple, submitted to Supercond. Sci. Technol. 12, 264 (1999).

  9. L. Martini, in Studies of High Temperature Superconductors, Vol. 21 (Anant Narlikar, ed, Nova Science Publishers, Inc., 1996).

  10. S. X. Dou, R. Zeng, B. Ye, Y. C. Guo, Q. Y. Hu, J. Horvat, H. K. Liu, T. Beales, X. F. Yang, and M. Apperley, Supercond. Sci. Technol. 11, 915 (1998).

    Google Scholar 

  11. E. Mogiko and Y. Schlesinger, Supercond. Sci. Technol. 10, 134 (1997).

    Google Scholar 

  12. D. H. Galván, M. Ávalos-Borja, M. H. Farías, L. Cota-Araiza, A. Reyes, J. Cruz-Reyes, E. A. Early, G. Nieva, M. C. de Anadrade, and M. B. Maple, J. Mater. Sci. 29, 2713 (1994).

    Google Scholar 

  13. S. Sengupta, D. Shi, J. S. Luo, A. Buzdin, V. Gorin, V. R. Todt, C. Varanasi, and P. J. McGinn, J. Appl. Phys. 81, 7396 (1996).

    Google Scholar 

  14. E. Mezzetti, S. Colombo, R. Gerbaldo, G. Ghigo, L. Gozzelino, B. Minnetti, and R. Cherubini, Phys. Rev. B 54, 3633 (1996).

    Google Scholar 

  15. W. Gerhäuser, G. Ries, H. N. Neumüller, W. Schmidt, O. Eibl, G. Saemann-Ischenko, and S. Klaumünzer, Phys. Rev. Lett. 68, 879 (1992).

    PubMed  Google Scholar 

  16. M. Murakami, Supercond. Sci. Technol. 5, 185 (1992).

    Google Scholar 

  17. C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).

    Google Scholar 

  18. C. P. Bean, Rev. Mod. Phys. 36, 31, (1964).

    Google Scholar 

  19. J. Joo, J. P. Singh, R. B. Poeppel, A. K. Gangopadhyay, and T. O. Mason, J. Appl. Phys. 71, 2351 (1992).

    Google Scholar 

  20. F. Yeh and K. White, J. Appl. Phys. 70, 4989 (1991).

    Google Scholar 

  21. J. Giapintzakis, M. A. Kirk, W. C. Lee, J. P. Price, D. M. Ginsberg, I. M. Robertson, and R. Wheeler, Mat. Res. Symp. Proc. 275, 741 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangel, R., Galván, D.H., Adem, E. et al. Determination of the Intragrain Critical Current Density and Thermogravimetric Analysis on YBCO/Ag Superconductors Irradiated with 60Co Gamma Rays. Journal of Superconductivity 12, 641–648 (1999). https://doi.org/10.1023/A:1007748018298

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007748018298

Navigation