Journal of Theoretical Probability

, Volume 13, Issue 1, pp 225–257 | Cite as

Convergence of Empirical Processes for Interacting Particle Systems with Applications to Nonlinear Filtering

  • P. Del Moral
  • M. Ledoux


In this paper, we investigate the convergence of empirical processes for a class of interacting particle numerical schemes arising in biology, genetic algorithms and advanced signal processing. The Glivenko–Cantelli and Donsker theorems presented in this work extend the corresponding statements in the classical theory and apply to a class of genetic type particle numerical schemes of the nonlinear filtering equation.

empirical processes Interacting particle systems Glivenko–Cantelli and Donsker theorems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbe, P., and Bertail, P. (1995). The weighted bootstrap, Lecture Notes in Statistics, No. 98, Springer-Verlag.Google Scholar
  2. 2.
    Benes, B. E. (1981). Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics 5, 65–92.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bridges, C. L., and Goldberg, D. E. (1987). An analysis of reproduction and crossover in a binary-coded genetic algorithm. In Grefenstette, J. J. (ed.), Proc. Second Int'l. Conf. Genetic Algorithms, Lawrence Erlbaum Associates.Google Scholar
  4. 4.
    Bucy, R. S. (1994). Lectures on Discrete Time Filtering, Springer Verlag, Signal Processing and Digital Filtering.Google Scholar
  5. 5.
    Carvalho, H. (1995). Filtrage optimal nonlinéaire du signal GPS NAVSTAR en racalage de centrales de navigation, Thése de L'Ecole Nationale Supérieure de l'Aéronautique et de l'Espace, Toulouse.Google Scholar
  6. 6.
    Carvalho, H., Del Moral, P., Monin, A., and Salut, G. (1997). Optimal nonlinear filtering in GPS/INS integration. IEEE Trans. Aerospace Electronic Syst. 33(3), 835–850.CrossRefGoogle Scholar
  7. 7.
    Chaleyat-Maurel, M., and Michel, D. (1983). Des résultats de nonexistence de filtres de dimension finie, C. R. Acad. Sci. Paris, Serie I, t. 296.Google Scholar
  8. 8.
    Crisan, D., and Lyons, T. J. (1997). Nonlinear filtering and measure valued processes. Proc. Th. Rel. Fields 109, 217–244.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Crisan, D., Gaines, J., and Lyons, T. J. (1998). Convergence of a branching particle method to the solution of the zakai equation. Society for Industrial and Applied Mathematics. J. Appl. Math. 58(5), 1568–1590.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Crisan, D., Del Moral, P., and Lyons, T. J. (1999). Nonlinear filtering using branching and interacting particle systems. Markov Processes and Related Fields 5(3), 293–319.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Del Moral, P. (1998). Measure valued processes and interacting particle systems. Application to nonlinear filtering problems. Ann. Appl. Prob. 8, 438–495.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Del Moral, P. (1996). Nonlinear filtering: Interacting particle resolution. Markov Proc. Rel. Fields 2, 555–581.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Del Moral, P. (1997). Filtrage nonlinéaire par systèmes de particules en intéraction, C. R. Acad. Sci. Paris, t. 325, Série I, pp. 653–658.Google Scholar
  14. 14.
    Del Moral, P., and Guionnet, A. (1999). A central limit theorem for nonlinear filtering using interacting particle systems. Ann. Appl. Prob. (to appear).Google Scholar
  15. 15.
    Del Moral, P., and Guionnet, A. (1998). Large deviations for interacting particle systems. Applications to nonlinear filtering problems. Stoch. Proc. Appl. 78, 69–95.CrossRefGoogle Scholar
  16. 16.
    Del Moral, P., and Guionnet, A. (1998). On the stability of measure valued processes. Applications to nonlinear filtering and interacting particle systems, Publications du Laboratoire de Statistiques et Probabilités, Université Paul Sabatier, No. 03–98.Google Scholar
  17. 17.
    Del Moral, P., Jacod, J., and Protter, Ph. (1998). The Monte-Carlo method for filtering with discrete time observations. Publications du Laboratoire de Probabilités, Paris VI.zbMATHGoogle Scholar
  18. 18.
    Goldberg, D. E. (1985). Genetic algorithms and rule learning in dynamic control systems, Proc. First Int'l. Conf. Genetic Algorithms, Lawrence Erlbaum Associates Hillsdale, New Jersey, pp. 8–15.Google Scholar
  19. 19.
    Goldberg, D. E. (1987). Simple genetic algorithms and the minimal deceptive problem. In Lawrence Davis (ed.), Genetic Algorithms and Simulated Annealing, Pitman.Google Scholar
  20. 20.
    Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Massachusetts.zbMATHGoogle Scholar
  21. 21.
    Gordon, N. J., Salmon, D. J., and Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEEE.Google Scholar
  22. 22.
    Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.Google Scholar
  23. 23.
    Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory, Academic Press.Google Scholar
  24. 24.
    Kallianpur, G., and Striebel, C. (1967). Stochastic differential equations occuring in the estimation of continuous parameter stochastic processes, Technical Report No. 103, Department of statistics, University of Minnesota.Google Scholar
  25. 25.
    Kunita, H. (1971). Asymptotic behavior of nonlinear filtering errors of Markov processes. J. Multivar. Anal. 1(4), 365–393.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ledoux, M., and Talagrand, M. (1991). Probability in Banach Spaces, Springer-Verlag.Google Scholar
  27. 27.
    Liang, D., and McMillan, J. (1989). Development of a marine integrand navigation system, Kalman Filter Integration of Modern Guidance and Navigation Systems, AGARD-LS-166, OTAN.Google Scholar
  28. 28.
    Nix, A., and Vose, M. D. (1991). Modeling genetic algorithms with Markov chains. Ann. Math. Artificial Intelligence 5, 79–88.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ocone, D. L. (1980). Topics in nonlinear filtering theory, Ph.D. thesis, MIT, Cambridge.Google Scholar
  30. 30.
    Pardoux, E. (1989). Filtrage Nonlinéaire et Equations aux Dérivés Partielles Stochastiques Associées, Ecole d'été de Probabilités de Saint-Flour XIX. [Lecture Notes in Mathematics, 1464, Springer-Verlag. 1991.]Google Scholar
  31. 31.
    Pollard, D. (1984). Convergence of Stochastic Processes, Springer Verlag, New York.CrossRefGoogle Scholar
  32. 32.
    Rachev, S. T. (1991). Probability Metrics and the Stability of Stochastic Models, Wiley, New York.zbMATHGoogle Scholar
  33. 33.
    Segrest, P., and Goldberg, D. E. (1987). Finite Markov chain analysis of genetic algorithms. In Grefenstette, J. J. (ed.), Proc. Second Int'l. Conf. Genetic algorithms, Lawrence Erlbaum Associates.Google Scholar
  34. 34.
    Shiryaev, A. N. (1966). On stochastic equations in the theory of conditional Markov processes. Theor. Prob. Appl. 11, 179–184.Google Scholar
  35. 35.
    Stettner, L. (1989). On Invariant Measures of Filtering Processes, Stochastic Differential Systems, Lecture Notes in Control and Information Sciences, Vol. 126, Springer-Verlag.Google Scholar
  36. 36.
    Stratonovich, R. L. (1960). Conditional Markov processes. Theor. Prob. Appl. 5, 156–178.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Talagrand, M. (1994). Sharper bounds for Gaussian and empirical processes. Ann. Prob., 22, 28–76.MathSciNetCrossRefGoogle Scholar
  38. 38.
    van der Vaart, A. N., and Wellner, J. A. (1996). Weak convergence and empirical processes with applications to statistics, Springer Series in Statistics.Google Scholar
  39. 39.
    Vose, M. D. (1993). Modeling simple genetic algorithms, Foundations of Genetic Algorithms, Morgan Kaufmann.Google Scholar
  40. 40.
    Vose, M. D. (1995). Modeling simple genetic algorithms. Elementary Computations 3(4), 453–472.Google Scholar
  41. 41.
    Vose, M. D., and Liepins, G. E. (1993). Punctuated equilibria in genetic search. Complex Systems, 5, 31–44.MathSciNetzbMATHGoogle Scholar
  42. 42.
    Vose, M. D., and Wright, A. H. (1995). Simple genetic algorithms with linear fitness. Elementary Computations 2(4), 347–368.Google Scholar
  43. 43.
    Whitley, L. D. (1993). An executable model of a simple genetic algorithm, Foundations of Genetic Algorithms, Morgan Kaufmann.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • P. Del Moral
  • M. Ledoux

There are no affiliations available

Personalised recommendations