Skip to main content
Log in

Effects of Trimetazidine on Metabolic and Functional Recovery of Postischemic Rat Hearts

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The objective of this study was to test the hypothesis that the beneficial effect of trimetazidine during reflow of ischemic hearts is mediated by energy sparing and ATP pool preservation during ischemia. Isolated rat hearts (controls and rats treated with 10−6 M trimetazidine, n = 17 per group) underwent the following protocol: baseline perfusion at normal coronary flow (20 minutes), low-flow ischemia at 10% flow (60 minutes), and reflow (20 minutes). We measured contractile function, O2 uptake, lactate release, venous pH and PCO2, and the tissue content of high-energy phosphates and their metabolites. During baseline, trimetazidine induced higher venous pH and lower PCO2 without influencing performance and metabolism. During low-flow ischemia, trimetazidine reduced myocardial performance (P = 0.04) and ATP turnover (P = 0.02). During reflow, trimetazidine improved performance (91 ± 6% versus. 55 ± 6% of baseline), prevented the development of diastolic contracture and coronary resistance, and reduced myocardial depletion of adenine nucleotides and purines. ATP turnover during low-flow ischemia was inversely related to recovery of the rate-pressure product (P = 0.002), end-diastolic pressure (P = 0.007), and perfusion pressure (P = 0.05). We conclude that trimetazidine-induced protection of ischemic-reperfused hearts is also mediated by energy sparing during ischemia, which presumably preserves the ATP pool during reflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Detry JMR, Leclerq PJ. Trimetazidine European multicenter study versus propranolol in stable angina pectoris: Contribution of Holter electrocardiographic ambulatory monitoring. Am J Cardiol 1995;76:8B-11B.

    Article  PubMed  Google Scholar 

  2. Levy S. Combination therapy of trimetazidine with diltiazem in patients with coronary artery disease. Am J Cardiol 1995;76:12B-16B.

    Article  PubMed  Google Scholar 

  3. Lavanchy N, Martin J, Rossi A. Anti-ischemic effects of trimetazidine: 3P-NMR spectroscopy in the isolated rat heart. Arch Internat Pharmacodyn Ther 1987;286:97-110.

    Google Scholar 

  4. Renaud JF. Internal pH, Na+, and Ca++ regulation by trimetazidine during cardiac cell necrosis. Cardiovasc Drug Ther 1988;1:677-686.

    Google Scholar 

  5. Boucher FR, Hearse DJ, Opie LH. Effects of trimetazidine on ischemic contracture in isolated perfused rat hearts. J Cardiovasc Pharmacol 1994;24:45-49.

    PubMed  Google Scholar 

  6. Maupoil V, Rochette L. Evaluation of free radical and lipid peroxide formation during global ischemia and reperfusion in isolated rat heart. Cardiovasc Drug Ther 1988;2:615-621.

    Google Scholar 

  7. Guarnieri C, Muscari C. Beneficial effects of trimetazidine on mitochondrial function and superoxide production in the cardiac muscle. Cardiovasc Drug Ther 1990;4:814-815.

    Google Scholar 

  8. Ruiz-Meana, M, Garcia-Dorado D, Julia M, Gonzalez MA, Inserte J, Soler-Soler J. Pre-treatment with trimetazidine increases sarcolemmal mechanical resistance in reoxygenated myocytes. Cardiovasc Res 1996;587-592.

  9. Hisatome I, Ishiko R, Tanaka Y, et al. Trimetazidine inhibits Na+,K+-ATPase activity, and overdrives hyperpolarization in guinea-pig ventricular muscles. Eur J Pharmacol 1991;195:381-388.

    Article  PubMed  Google Scholar 

  10. Guarnieri C, Finelli C, Zini M, Muscari C. Effects of trimetazidine on the calcium transport and oxidative phosphorylation of isolated rat heart mitochondria. Basic Res Cardiol 1997;92:90-95.

    Article  PubMed  Google Scholar 

  11. Samaja M, Motterlini R, Allibardi S, et al. Myocardial metabolism and function in acutely ischemic and hypoxemic isolated rat hearts. J Mol Cell Cardiol 1995;27:1213-1218.

    Article  PubMed  Google Scholar 

  12. Samaja M, Motterlini R, Santoro F, Dell'Antonio G, Corno A. Oxidative injury in reoxygenated and reperfused hearts. Free Radic Biol Med 1994;16:255-262.

    Article  PubMed  Google Scholar 

  13. Corno A, Samaja M, Casalini S, Allibardi S. The effects of the rate of reoxygenation on the recovery of hypoxemic hearts. J Thorac Cardiovasc Surg 1995;109:1250-1251.

    PubMed  Google Scholar 

  14. Samaja M, Casalini S, Allibardi S, Corno A, Chierchia S. Regulation of bioenergetics in O2-limited isolated rat hearts. J Appl Physiol 1994;77:2530-2536.

    PubMed  Google Scholar 

  15. Motterlini R, Samaja M, Tarantola M, Micheletti R, Bianchi G. Functional and metabolic effects of propionyl-L-carnitine in the isolated perfused hypertrophied rat heart. Mol Cell Biochem 1992;116:139-145.

    PubMed  Google Scholar 

  16. Davtyan HG, Corno A, Laks H, et al. Long-term neonatal heart preservation. J Thorac Cardiovasc Surg 1988;96: 44-53.

    PubMed  Google Scholar 

  17. Roughton FJW, Severinghaus JW. Accurate determination of O2 dissociation curve of human above 98.7% saturation with data on O2 solubility in unmodified human blood from 0°; to 37°; C. J Appl Physiol 1973;35:861-869.

    PubMed  Google Scholar 

  18. Thomas LJ. Algorithms for selected blood acid-base and blood gas calculations. J Appl Physiol 1972;33:154-158.

    PubMed  Google Scholar 

  19. Williams FM, Tanda K, Kus M, Williams TJ. Trimetazidine inhibits neutrophils accumulation after myocardial ischemia and reperfusion in rabbits. J Cardiovasc Pharmacol 1993; 22:823-833.

    Google Scholar 

  20. Astarie-Dequeker C, Joulin Y, Devynck MA. Inhibitory effect of trimetazitidine on thrombin-induced aggregation and calcium entry into human platelets. J Cardiovasc Pharmacol 1994;23:410-407.

    Google Scholar 

  21. Royer RJ, Royer Morrot MJ, Bannwarth B, Giffard S, Harpey C. Evaluation des concentrations à l'état d'équilibre et de la fixation globulaire de la trimétazidine. Vastarel 20 mg et l'ischémie myocardique. Gaz Med France 1984;91:69-70.

    Google Scholar 

  22. Fantini E, Athias P, Demaison L, Grynberg A. Protective effects of trimetazidine on hypoxic cardiac myocytes from the rat. Fundam Clin Pharmacol 1997;11:427-439.

    PubMed  Google Scholar 

  23. Lagadic-Gossmann D, Le Prigent K, Feuvray D. Effects of trimetazidine on pHi regulation in the rat isolated ventricular myocyte. Br J Pharmacol 1996;117:831-838.

    PubMed  Google Scholar 

  24. Reimer KA, Jennings RB, Hill ML. Total ischemia in dog hearts, in vitro. 2. High energy phosphate depletion and associated defects in energy metabolism, cell volume regulation, and sarcolemmal integrity. Circ Res 1981;49:901-911.

    PubMed  Google Scholar 

  25. Zhou HZ, Malhotra D, Shapiro JI. Contractile dysfunction during metabolic acidosis: Role of impaired energy metabolism. Am J Physiol 1991;261:H1481-H1486.

    PubMed  Google Scholar 

  26. Veitch K, Maisin L, Hue L. Trimetazidine effects on the damage to mitochondrial functions caused by ischemia and reperfusion. Am J Cardiol 1995;76:25B-30B.

    Article  PubMed  Google Scholar 

  27. Lopaschuk GD, Kozak R. Trimetazidine inhibits fatty acid oxidation in the heart (abstr). J Mol Cell Cardiol 1998; 30:A112.

    Google Scholar 

  28. Rossi A, Lortet S. Energy metabolism patterns in mammalian myocardium adapted to chronic physiopathological conditions. Cardiovasc Res 1996;31:163-171.

    Article  PubMed  Google Scholar 

  29. Bak MI, Ingwall JS. Acidosis during ischemia promotes adenosine triphosphate resynthesis in postischemic rat heart. J Clin Invest 1994;93:40-49.

    PubMed  Google Scholar 

  30. Samaja M, Allibardi S, de Jonge R, Chierchia S. High-energy phosphates metabolism and recovery in reperfused ischemic hearts. Eur J Clin Invest 1998, in press.

  31. Koning MM, Krams R, Xiao CS, et al. Intracoronary trimetazidine does not improve recovery of regional function in a porcine model of repeated ischemia. Cardiovasc Drug Ther 1996;7:801-807.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allibardi, S., Chierchia, S.L., Margonato, V. et al. Effects of Trimetazidine on Metabolic and Functional Recovery of Postischemic Rat Hearts. Cardiovasc Drugs Ther 12, 543–549 (1998). https://doi.org/10.1023/A:1007731219206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007731219206

Navigation