Skip to main content
Log in

Direct Evidence of Macroscopic Quantum Effects at High Temperature

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

We present experiments on macroscopic quantum effects in Josephson junctions with different relevant junction parameters at a temperature well above the classical-quantum crossover temperature. This has been possible by extending the measurements on the escape rate out of the metastable state at higher sweeping frequency (dI/dt up to 100 A/sec.) in order to induce non-stationary conditions in the energy potential describing the junction dynamics. The non-stationary regime for the system allows a direct observation of energy level quantitation when the rate of change of the external energy, measured in terms of the level spacing, is fast with respect to the thermal transitions between levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. D. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981). See also A. J. Leggett, in Yu. Kagan and A. J. Leggett, eds., Quantum Tunneling in Condensed Media (Elsevier, Amsterdam, 1992), vol. 2, and references therein; and A. Leggett, J. Supercond. 12, 683 (1999).

    Google Scholar 

  2. A. Barone and G. Paternò, in Physics and Applications of Josephson Effect (Wiley, New York, 1982), chap. 6.

    Google Scholar 

  3. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 91, 318 (1986) [Sov. Phys. JETP 64, 185 (1986)].

    Google Scholar 

  4. S. Washburn, R. F. Voss, R. A. Webb, and S. Faris, Phys. Rev. Lett. 54, 2712 (1985).

    PubMed  Google Scholar 

  5. M. H. Devoret, J. M. Martinis, D. Esteve, and J. Clarke, Phys. Rev. Lett. 53, 1260 (1984).

    Google Scholar 

  6. J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. Lett. 55, 1543 (1985); M. H. Devoret, J. M. Martinis, and J. Clarke, Phys. Rev. Lett. 55, 1908 (1985); J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. B 35, 4682 (1987); and references therein.

    PubMed  Google Scholar 

  7. D. B. Schwartz, B. Sen, C. N. Archie, and J. Lukens, Phys. Rev. Lett. 57, 1547 (1985).

    Google Scholar 

  8. R. Rouse, Siyuan Han, and J. E. Lukens, Phys. Rev. Lett. 75, 1614 (1995).

    PubMed  Google Scholar 

  9. N. Hatakenaka, S. Kurihara, and H. Takayanagi, Phys. Rev. B 42, 3987 (1990); J. M. Schmidt, A. N. Clealand, and J. Clarke, Phys. Rev. B 43, 229 (1991); Yu. N. Ovchinnikov, P. Silvestrini, B. Ruggiero, and A. Barone, J. Supercond. 5, 481 (1992); P. Silvestrini, B. Ruggiero, Yu. N. Ovchinnikov, and A. Barone, Phys. Rev. B 53, 67 (1996); P. Silvestrini, B. Ruggiero, and Yu. N. Ovchinnikov, Phys. Rev. B 54, 1246 (1996).

    Google Scholar 

  10. P. Silvestrini, V. G. Palmieri, B. Ruggiero, and M. Russo, Phys. Rev. Lett. 79, 3046 (1997).

    Google Scholar 

  11. D. Esteve, J. M. Martinis, C. Urbina, E. Turlot, M. H. Devoret, H. Grabert, and S. Linkwitz, Physica Scripta T29, 121 (1989)

    Google Scholar 

  12. P. Silvestrini, O. Liengme, and K. E. Gray, Phys. Rev. B 37, 1525 (1988); P. Silvestrini, R. Cristiano, S. Pagano, O. Liengme, and K. E. Gray, Phys. Rev. Lett. 60, 844 (1988); B. Ruggiero, P. Silvestrini, C. Granata, V. G. Palmieri, A. Esposito, and M. Russo, Phys. Rev. B 57, 134 (1998).

    Google Scholar 

  13. L. S. Kuzmin and D. B. Haviland, Phys. Rev. Lett. 67, 2890 (1991).

    PubMed  Google Scholar 

  14. Y. Nakamura, C. D. Chen, and J. S. Tsai, Phys. Rev. Lett. 79, 2328 (1997); Y. Nakamura and J. S. Tsai, J. Supercond. 12, 799 (1999).

    Google Scholar 

  15. H. A. Kramers, Physica 7, 284 (1940).

    Google Scholar 

  16. M. Buttiker, E. P. Harris, and R. Landauer, Phys. Rev. B 28, 1268 (1983), and references therein.

    Google Scholar 

  17. P. Silvestrini, Yu. N. Ovchinnikov, and R. Cristiano, Phys. Rev. B 41, 7341 (1990); P. Silvestrini, Phys. Lett. A 152, 306 (1991); P. Silvestrini, B. Ruggiero, and A. Esposito, Fiz. Nik. Temp. 22, 195 (1996) [Low Temp. Phys. 22, 252 (1996)].

    Google Scholar 

  18. T. A. Fulton and L. N. Dunkleberger, Phys. Rev. B 9, 4760 (1974).

    Google Scholar 

  19. M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996).

    PubMed  Google Scholar 

  20. V. Bouchiat et al., J. Suppercond. 12, 789 (1999).

    Google Scholar 

  21. D. Flees, S. Han, and J. Lukens, J. Supercond. 12, 813 (1999).

    Google Scholar 

  22. C. van der Wal and S. E. Mooji, J. Supercond. 12, 807 (1999).

    Google Scholar 

  23. Y. Nakamura, C. D. Chen, and J. S. Tsai, Nature 398, 786 (1999); D. V. Averin, Nature 398, 748 (1999).

    Google Scholar 

  24. For Instance, MQC project-INFN Roma/Napoli-Italy; P. Silvestrini and L. Srodolsky (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvestrini, P., Ruggiero, B., Palmieri, V.G. et al. Direct Evidence of Macroscopic Quantum Effects at High Temperature. Journal of Superconductivity 12, 727–733 (1999). https://doi.org/10.1023/A:1007724807820

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007724807820

Navigation