Skip to main content
Log in

Stochastic Wave Function Approach to Generalized Master Equations

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

A generalization of the stochastic wave function method is presented that allows the unraveling of arbitrary linear quantum master equations that are not necessarily in Lindblad form and, moreover, the explicit treatment of memory effects by employing the time-convolutionless projection operator technique. The crucial point of this construction is the description of the open system in a doubled Hilbert space, which has already been successfully used for the computation of multitime correlation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics m18 (Springer-Verlag, Berlin, Heidelberg, New York, 1993).

    Google Scholar 

  2. J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580 (1992).

    PubMed  Google Scholar 

  3. N. Gisin and I. C. Percival, J. Phys. A 25, 5677 (1992).

    Google Scholar 

  4. C. W. Gardiner, A. S. Parkins, and P. Zoller, Phys. Rev. A 46, 4363 (1992).

    PubMed  Google Scholar 

  5. H. P. Breuer and F. Petruccione, Phys. Rev. E 52, 428 (1995) [Phys. Rev. Lett. 74, 3788 (1995)].

    Google Scholar 

  6. H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 1652 (1993).

    PubMed  Google Scholar 

  7. H. P. Breuer and F. Petruccione, Fortschr. Phys. 45, 39 (1997).

    Google Scholar 

  8. H. P. Breuer, W. Huber, and F. Petruccione, Comput. Phys. Commun. 104, 46 (1997).

    Google Scholar 

  9. S. Chaturvedi and J. Shibata, Z. Phys. B 35, 297 (1979).

    Google Scholar 

  10. N. H. F. Shibata and Y. Takahashi, J. Stat. Phys. 17, 171 (1977).

    Google Scholar 

  11. R. Alicki and K. Lendi, Lecture Notes in Physics: Quantum Dynamical Semigroups and Applications (Springer-Verlag, Berlin, Heidelberg, New York, 1987).

  12. H. P. Breuer, B. Kappler, and F. Petruccione, Eur. Phys. J. D 1, 9 (1998).

    Google Scholar 

  13. S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).

    Google Scholar 

  14. R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).

    Google Scholar 

  15. P. Résibois, Physica 27, 721 (1963).

    Google Scholar 

  16. N. G. van Kampen, Physica 74, 239 (1974).

    Google Scholar 

  17. B. M. Garraway, Phys. Rev. A 55, 2290 (1996).

    Google Scholar 

  18. F. Shibata and T. Arimitsu, J. Phys. Soc. Jpn. 49, 891 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breuer, HP., Kappler, B. & Petruccione, F. Stochastic Wave Function Approach to Generalized Master Equations. Journal of Superconductivity 12, 695–702 (1999). https://doi.org/10.1023/A:1007716506003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007716506003

Navigation