Skip to main content

On the Significance of Magnesium in Extreme Physical Stress

Abstract

In a double-blind randomized study, 23 competitive triathletes competing in an event consisting of a 500-meter swim, a 20-km bicycle race, and a 5-km run were studied after 4-week supplementation with placebo or 17 mmol/d Mg orotate. The tests were carried out without a break. Blood was collected before and after the test, and between the different events for assaying energy stress and membrane metabolism. Swimming, cycling, and running times decreased in the Mg-orotate group compared with the controls. Serum glucose concentration increased 87% during the test in the control group and 118% in the Mg-orotate group, while serum insulin increased 39% in the controls and decreased 65% in the Mg-orotate group. Venous 2 partial pressure increased 126% during the test in the controls and increased 208% in the Mg-orotate group. Venous 2 partial pressure after the bicycle race decreased 66% (significantly) in the Mg-orotate group compared with 74% in the controls. Blood proton concentration decreased to 90% in the Mg-orotate group (significantly) compared with 98% in the controls. Blood leukocyte count increased from 5.92/nL to 11.0/nL in the controls and from 5.81/nL to 9.10/nL in the Mg-orotate group, a significant difference. Serum cortisol was lower in the Mg-orotate group before and after the test compared with the controls. CK catalytic concentration after the test was elevated 140% in the controls compared with 122% Mg-orotate group. The stress-induced modifications of energy and hormone metabolism described in this study indicate altered glucose utilization after Mg-orotate supplementation and a reduced stress response without affecting competitive potential.

This is a preview of subscription content, access via your institution.

References

  1. Vallee B. Metal and enzyme interactions: Correlation, composition, function and structure. Enzymes 1960;3:225-270.

    Google Scholar 

  2. Hasselbach W, Fassold E, Migala A, Rauch B. Magnesium dependence of sarcoplasm calcium transport. Fed Proc 1981;40:2657-2661.

    Google Scholar 

  3. Bailey LE. Orotic acid prevents changes in cardiac sarcolemmal glycoproteins and contractility associated with muscular dystrophy in hamsters. Experientia 1980;36:94-95.

    Google Scholar 

  4. Kuznetsova LV, Avakumov VM. Effect of potassium orotate and the sodium salt of uridine monophosphate on the development of experimental adrenalin myocardial dystrophy. Farmacol Toksikol 1981;44:170-173.

    Google Scholar 

  5. Newman MAJ, Chen X, Rabinov M, Williams JF, Rosenfeldt FL. Sensitivity of the recently infarcted heart to cardioplegic arrest. Beneficial effect of pretreatment with orotic acid. J Thorac Cardiovasc Surg 1989;97:593-604.

    Google Scholar 

  6. Müller G. Metabolic effects of orotic acid. Zeitschr Gesamte Inn Med 1984;39:269-273.

    Google Scholar 

  7. Harden KK, Robinson JL. Hypercholesteremia induced by orotic acid: Dietary effects and species specificity. J Nutr 1984;114:411-421.

    Google Scholar 

  8. Robinson JL, Dombrowski DB, Tauss LR, Jones LR. Assessment in humans of hyperlipidemia induced by orotic acid. Am J Clin Nutr 1985;41:605-608.

    Google Scholar 

  9. Woods KL, Fletcher S, Roffe C, Haider Y. Intravenous magnesium sulphate in suspected acute myocardial infarction: Results of the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet 1992;339:1553-1558.

    Google Scholar 

  10. Gold SW. Is magnesium a limiting factor in competitive exercise? A summary of relevant scientific data. In: Gold SW, Dralle D, Vecchiet L, ed. Magnesium 1993. London: John Libbey, 1994:209-219.

    Google Scholar 

  11. Golf SW, Graef V, Gerlach HJ, Seim KE. Veränderungen der Serum-CK-und Serum-CK-MB-Aktivitäten in Abhängigkeit von einer Magnesiumsubstitution bei Leistungssportlerinnen. Magnes Bull 1983;2:43-46.

    Google Scholar 

  12. Beuker F. The influence of magnesium-hydrogen-aspartate on the fitness of body builders. Magnes Bull 1986;8:310-313.

    Google Scholar 

  13. Böhmer D. Die Veränderungen des Magnesiumspiegels im Serum nach sportlichen Belastungen. Krankenhausarzt 1978;51:356-357.

    Google Scholar 

  14. Classen HG, Classen O, Fischer G, et al. Magnesium: Prevention of stress-induced cardiovascular damage. Magnes Bull 1986;8:140-144.

    Google Scholar 

  15. Golf SW, Graef V, Riediger H, Bertschat F. Schutzeffekt von Magnesium für die Membran der Muskelzelle beim Marathonläufer. Deutsche Zeitschr Sportmedizin 1987;38: 51-59.

    Google Scholar 

  16. Günther T. Magnesiumstoffwechsel. In: Greiling H, Gressner AM, eds. Lehrbuch der Klnischen Chemie und Pathobiochemie. Stuttgart: Schattauer, 1987:404-408.

    Google Scholar 

  17. Sutton JR, Coleman MJ, Casey J, Lazarus L. Androgen responses during physical exercise. Br Med J 1971;1: 520-522.

    Google Scholar 

  18. Kleesiek K. Psychoendokrinologie. In: Greiling H, Gressner AM, eds. Lehrbuch der Klinischen Chemie und Pathobiochemie. Stuttgart: Schattauer, 1987:852-858.

    Google Scholar 

  19. Gold SW, Happel O, Graef V, Seim KE. Plasma aldosterone, cortisol and electrolyte concentrations in physical exercise after magnesium supplementation. J Clin Chem Clin Biochem 1984;22:717-721.

    Google Scholar 

  20. Golf SW. Biochemistry of magnesium in man. In: Golf SW, Dralle D, Vecchiet L, eds. Magnesium 1993. London: John Libbey, 1994:31-41.

    Google Scholar 

  21. Golf S, Temme H, Möbius T, Graef V, Roka L, Homann J. Magnesiumtherapie nach akutem Herzinfarkt: Zeitlicher Verlauf biochemischer Parameter im Blut. Magnes Bull 1988;1019-123.

  22. Zemkova LN, Novoselova GS, Remizova IV, Komar VE. The action of potassium orotate in prophylactic and therapeutic administration to irradiated rats. Radiobiologiia 1985;25:208-211.

    Google Scholar 

  23. Ebel H, Günther T. Magnesium metabolism: A review. J Clin Chem Clin Biochem 1980;18:257-270.

    Google Scholar 

  24. Poliachenko LI, Pokotilenko GM. Effect of orotic acid and uridine-5-phosphate on the activity of blood serum MB creatine phosphokinase in experimental myocarditis. Vrach Delo 1997;6:25-26.

    Google Scholar 

  25. Bertschat F, Gold SW, Riediger H, Graef V. Protective effects of magnesium on release of proteins from muscle cells during a marathon run. Magnes Bull 1986;8:310-313.

    Google Scholar 

  26. Ullrich A, Bell JR, Chen EY, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985;313:756-761.

    Google Scholar 

  27. Presse B. Magnesiumstatus bei Kindern mit Diabetes mellitus Typ I und Beziehungen zum Kohlenhydratstoffwechsel und zur Gerinnung. Dissertation. Medical School of Justus-Liebig-University Giessen, 199:1-60.

  28. Gallo G, Voci A, Cordone A, Fugassa E. Hormonal stimulation of 3H-orotic acid incorporation into RNA by serum-free cultured hepatocytes. Cell Biol Int Rep 1983;7:417-425.

    Google Scholar 

  29. Heaton FW, Elie JP. Metabolic activity of liver mitochondria from magnesium-deficient rats. Magnesium 1984;3:21-28.

    Google Scholar 

  30. Digiorgio J, Vitale JJ, Hellerstein EE. Sarcosomes and magnesium deficiency in ducks. Biochem J 1962;82:184-187.

    Google Scholar 

  31. Vitale JJ, Nakamura M, Hegsted DM. Effects of magnesium deficiency on oxidative phosphorylation. J Biol Chem 1957;228:573-576.

    Google Scholar 

  32. Hollmann W. Zentrale Themen der Sportmedizin, 3rd ed. Berlin: Springer-Verlag, 1986.

    Google Scholar 

  33. Ulmer HV. Energiehaushalt. In: Schmidt RF, Thews G, eds. Physiologie des Menschen, 22th ed. Heidelberg: Springer-Verlag, 1985:574-582.

    Google Scholar 

  34. Mirnov IU, Iasnetsov VS. Effect of pyridoxine, riboflavin, potassium orotate, folic and glutamic acids on the recovery of work capacity in sexually immature rats. Farmacol Toksikol 1985;48:110-112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Golf, S., Bender, S. & Grüttner, J. On the Significance of Magnesium in Extreme Physical Stress. Cardiovasc Drugs Ther 12 (Suppl 2), 197–202 (1998). https://doi.org/10.1023/A:1007708918683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007708918683

  • magnesium
  • physical stress
  • triathletes
  • glucose
  • insulin
  • O2 partial pressure
  • blood proton
  • cortisol
  • leukocytes
  • energy metabolism
  • hormone metabolism