Skip to main content

On the Significance of Magnesium in Extreme Physical Stress

Abstract

In a double-blind randomized study, 23 competitive triathletes competing in an event consisting of a 500-meter swim, a 20-km bicycle race, and a 5-km run were studied after 4-week supplementation with placebo or 17 mmol/d Mg orotate. The tests were carried out without a break. Blood was collected before and after the test, and between the different events for assaying energy stress and membrane metabolism. Swimming, cycling, and running times decreased in the Mg-orotate group compared with the controls. Serum glucose concentration increased 87% during the test in the control group and 118% in the Mg-orotate group, while serum insulin increased 39% in the controls and decreased 65% in the Mg-orotate group. Venous 2 partial pressure increased 126% during the test in the controls and increased 208% in the Mg-orotate group. Venous 2 partial pressure after the bicycle race decreased 66% (significantly) in the Mg-orotate group compared with 74% in the controls. Blood proton concentration decreased to 90% in the Mg-orotate group (significantly) compared with 98% in the controls. Blood leukocyte count increased from 5.92/nL to 11.0/nL in the controls and from 5.81/nL to 9.10/nL in the Mg-orotate group, a significant difference. Serum cortisol was lower in the Mg-orotate group before and after the test compared with the controls. CK catalytic concentration after the test was elevated 140% in the controls compared with 122% Mg-orotate group. The stress-induced modifications of energy and hormone metabolism described in this study indicate altered glucose utilization after Mg-orotate supplementation and a reduced stress response without affecting competitive potential.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Vallee B. Metal and enzyme interactions: Correlation, composition, function and structure. Enzymes 1960;3:225-270.

    Google Scholar 

  2. 2.

    Hasselbach W, Fassold E, Migala A, Rauch B. Magnesium dependence of sarcoplasm calcium transport. Fed Proc 1981;40:2657-2661.

    Google Scholar 

  3. 3.

    Bailey LE. Orotic acid prevents changes in cardiac sarcolemmal glycoproteins and contractility associated with muscular dystrophy in hamsters. Experientia 1980;36:94-95.

    Google Scholar 

  4. 4.

    Kuznetsova LV, Avakumov VM. Effect of potassium orotate and the sodium salt of uridine monophosphate on the development of experimental adrenalin myocardial dystrophy. Farmacol Toksikol 1981;44:170-173.

    Google Scholar 

  5. 5.

    Newman MAJ, Chen X, Rabinov M, Williams JF, Rosenfeldt FL. Sensitivity of the recently infarcted heart to cardioplegic arrest. Beneficial effect of pretreatment with orotic acid. J Thorac Cardiovasc Surg 1989;97:593-604.

    Google Scholar 

  6. 6.

    Müller G. Metabolic effects of orotic acid. Zeitschr Gesamte Inn Med 1984;39:269-273.

    Google Scholar 

  7. 7.

    Harden KK, Robinson JL. Hypercholesteremia induced by orotic acid: Dietary effects and species specificity. J Nutr 1984;114:411-421.

    Google Scholar 

  8. 8.

    Robinson JL, Dombrowski DB, Tauss LR, Jones LR. Assessment in humans of hyperlipidemia induced by orotic acid. Am J Clin Nutr 1985;41:605-608.

    Google Scholar 

  9. 9.

    Woods KL, Fletcher S, Roffe C, Haider Y. Intravenous magnesium sulphate in suspected acute myocardial infarction: Results of the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet 1992;339:1553-1558.

    Google Scholar 

  10. 10.

    Gold SW. Is magnesium a limiting factor in competitive exercise? A summary of relevant scientific data. In: Gold SW, Dralle D, Vecchiet L, ed. Magnesium 1993. London: John Libbey, 1994:209-219.

    Google Scholar 

  11. 11.

    Golf SW, Graef V, Gerlach HJ, Seim KE. Veränderungen der Serum-CK-und Serum-CK-MB-Aktivitäten in Abhängigkeit von einer Magnesiumsubstitution bei Leistungssportlerinnen. Magnes Bull 1983;2:43-46.

    Google Scholar 

  12. 12.

    Beuker F. The influence of magnesium-hydrogen-aspartate on the fitness of body builders. Magnes Bull 1986;8:310-313.

    Google Scholar 

  13. 13.

    Böhmer D. Die Veränderungen des Magnesiumspiegels im Serum nach sportlichen Belastungen. Krankenhausarzt 1978;51:356-357.

    Google Scholar 

  14. 14.

    Classen HG, Classen O, Fischer G, et al. Magnesium: Prevention of stress-induced cardiovascular damage. Magnes Bull 1986;8:140-144.

    Google Scholar 

  15. 15.

    Golf SW, Graef V, Riediger H, Bertschat F. Schutzeffekt von Magnesium für die Membran der Muskelzelle beim Marathonläufer. Deutsche Zeitschr Sportmedizin 1987;38: 51-59.

    Google Scholar 

  16. 16.

    Günther T. Magnesiumstoffwechsel. In: Greiling H, Gressner AM, eds. Lehrbuch der Klnischen Chemie und Pathobiochemie. Stuttgart: Schattauer, 1987:404-408.

    Google Scholar 

  17. 17.

    Sutton JR, Coleman MJ, Casey J, Lazarus L. Androgen responses during physical exercise. Br Med J 1971;1: 520-522.

    Google Scholar 

  18. 18.

    Kleesiek K. Psychoendokrinologie. In: Greiling H, Gressner AM, eds. Lehrbuch der Klinischen Chemie und Pathobiochemie. Stuttgart: Schattauer, 1987:852-858.

    Google Scholar 

  19. 19.

    Gold SW, Happel O, Graef V, Seim KE. Plasma aldosterone, cortisol and electrolyte concentrations in physical exercise after magnesium supplementation. J Clin Chem Clin Biochem 1984;22:717-721.

    Google Scholar 

  20. 20.

    Golf SW. Biochemistry of magnesium in man. In: Golf SW, Dralle D, Vecchiet L, eds. Magnesium 1993. London: John Libbey, 1994:31-41.

    Google Scholar 

  21. 21.

    Golf S, Temme H, Möbius T, Graef V, Roka L, Homann J. Magnesiumtherapie nach akutem Herzinfarkt: Zeitlicher Verlauf biochemischer Parameter im Blut. Magnes Bull 1988;1019-123.

  22. 22.

    Zemkova LN, Novoselova GS, Remizova IV, Komar VE. The action of potassium orotate in prophylactic and therapeutic administration to irradiated rats. Radiobiologiia 1985;25:208-211.

    Google Scholar 

  23. 23.

    Ebel H, Günther T. Magnesium metabolism: A review. J Clin Chem Clin Biochem 1980;18:257-270.

    Google Scholar 

  24. 24.

    Poliachenko LI, Pokotilenko GM. Effect of orotic acid and uridine-5-phosphate on the activity of blood serum MB creatine phosphokinase in experimental myocarditis. Vrach Delo 1997;6:25-26.

    Google Scholar 

  25. 25.

    Bertschat F, Gold SW, Riediger H, Graef V. Protective effects of magnesium on release of proteins from muscle cells during a marathon run. Magnes Bull 1986;8:310-313.

    Google Scholar 

  26. 26.

    Ullrich A, Bell JR, Chen EY, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985;313:756-761.

    Google Scholar 

  27. 27.

    Presse B. Magnesiumstatus bei Kindern mit Diabetes mellitus Typ I und Beziehungen zum Kohlenhydratstoffwechsel und zur Gerinnung. Dissertation. Medical School of Justus-Liebig-University Giessen, 199:1-60.

  28. 28.

    Gallo G, Voci A, Cordone A, Fugassa E. Hormonal stimulation of 3H-orotic acid incorporation into RNA by serum-free cultured hepatocytes. Cell Biol Int Rep 1983;7:417-425.

    Google Scholar 

  29. 29.

    Heaton FW, Elie JP. Metabolic activity of liver mitochondria from magnesium-deficient rats. Magnesium 1984;3:21-28.

    Google Scholar 

  30. 30.

    Digiorgio J, Vitale JJ, Hellerstein EE. Sarcosomes and magnesium deficiency in ducks. Biochem J 1962;82:184-187.

    Google Scholar 

  31. 31.

    Vitale JJ, Nakamura M, Hegsted DM. Effects of magnesium deficiency on oxidative phosphorylation. J Biol Chem 1957;228:573-576.

    Google Scholar 

  32. 32.

    Hollmann W. Zentrale Themen der Sportmedizin, 3rd ed. Berlin: Springer-Verlag, 1986.

    Google Scholar 

  33. 33.

    Ulmer HV. Energiehaushalt. In: Schmidt RF, Thews G, eds. Physiologie des Menschen, 22th ed. Heidelberg: Springer-Verlag, 1985:574-582.

    Google Scholar 

  34. 34.

    Mirnov IU, Iasnetsov VS. Effect of pyridoxine, riboflavin, potassium orotate, folic and glutamic acids on the recovery of work capacity in sexually immature rats. Farmacol Toksikol 1985;48:110-112.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Golf, S., Bender, S. & Grüttner, J. On the Significance of Magnesium in Extreme Physical Stress. Cardiovasc Drugs Ther 12, 197–202 (1998). https://doi.org/10.1023/A:1007708918683

Download citation

  • magnesium
  • physical stress
  • triathletes
  • glucose
  • insulin
  • O2 partial pressure
  • blood proton
  • cortisol
  • leukocytes
  • energy metabolism
  • hormone metabolism