Skip to main content
Log in

Using Conditional Measurements to Combat Decoherence

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

With the help of some remarkable examples, it is shown that conditional measurements performed on two-level atoms just after they have interacted with a resonant cavity field mode are able to recover the coherence of number-state superpositions, which is lost due to dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. H. Zurek, Phys. Rev. D 24, 1516 (1981); Phys. Rev. D 26, 1862 (1982); Phys. Today 44 (10), 36 (1991).

    Google Scholar 

  2. W. Unruh, Phys. Rev. A 51, 992 (1995); M. B. Plenio and P. L. Knight, Phys. Rev. A 53, 2986 (1996); C. H. Bennett, Phys. Today 48, 24 (1995).

    PubMed  Google Scholar 

  3. I. L. Chuang and Y. Yamamoto, Phys. Rev. Lett. 76, 4281 (1996).

    PubMed  Google Scholar 

  4. P. W. Shor, Phys. Rev. A 52, R2493 (1995); A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098 (1996); A. Ekert and C. Macchiavello, Phys. Rev. Lett. 77, 2585 (1996); A. Steane, Phys. Rev. Lett. 77, 793 (1996); A. Steane, Proc. R. Soc. London 452, 2551 (1996).

    PubMed  Google Scholar 

  5. P. W. Shor, in Proc. 37th Annual Symposium on Foundations of Computer Science (IEEE, Los Alamitos, 1996); D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error, lanl e-print quant-ph/9611025.

    Google Scholar 

  6. Theory: B. Sherman and G. Kurizki, Phys. Rev. A 45, R7674 (1992); B. Sherman, G. Kurizki, and A. Kadyshevitch, Phys. Rev. Lett. 69, 1927 (1992); B. M. Garraway, B. Sherman, H. Moya-Cessa, P. L. Knight, and G. Kurizki, Phys. Rev. A 49, 535 (1994); K. Vogel, V. M. Akulin, and W. P. Schleich, Phys. Rev. Lett. 71, 1816 (1993).

    PubMed  Google Scholar 

  7. Experiment: L. Davidovich, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. A 53, 1295 (1996); M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996).

    PubMed  Google Scholar 

  8. G. Harel, G. Kurizki, J. K. McIver, and E. Coutsias, Phys. Rev. A 53, 4534 (1996).

    PubMed  Google Scholar 

  9. H. F. Arnoldus, J. Opt. Soc. Am. B 13, 1099 (1996); M. O. Scully and W. E. Lamb, Jr., Phys. Rev. 179, 368 (1969).

    Google Scholar 

  10. D. Meschede, Phys. Rep. 211, 201 (1992).

    Google Scholar 

  11. E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

    Google Scholar 

  12. M. Fortunato, G. Harel, and G. Kurizki, Opt. Commun. 147, 71 (1998).

    Google Scholar 

  13. A. Kozhekin, G. Kurizki, and B. Sherman, Phys. Rev. A 54, 3535 (1996).

    PubMed  Google Scholar 

  14. G. Harel and G. Kurizki, Phys. Rev. A 54, 5410 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortunato, M., Harel, G. & Kurizki, G. Using Conditional Measurements to Combat Decoherence. Journal of Superconductivity 12, 825–828 (1999). https://doi.org/10.1023/A:1007701530110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007701530110

Navigation