Skip to main content
Log in

D-Wave Superconductivity and Coulomb Correlations in the Two-Dimensional Hubbard Lattice

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

We considered anisotropic superconductivity within the two-dimensional Hubbard model extended by pairing correlations originating from the electron–phonon interaction. To discuss the onset of superconductivity close to the insulator–metal transition, we used the Hubbard I approximation to account for the formation of the insulating gap and see the role of Coulomb correlations for superconducting pairing. It has been shown that the Hubbard I approximation reflects effective pairing interactions genuine for correlated electron systems and leads to the stabilization of the superconductivity in the d-wave channel. One may expect the cooperation of phonon-free and phonon-induced mechanism in the formation of thed-wave superconducting state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. M. Quinlan and D. J. Scalapino, Phys. Rev. B 51, 497 (1995).

    Google Scholar 

  2. D. A. Wollman, D. J. Van Harlingen, J. Giapintzakis, and D. M. Ginsberg, Phys. Rev. Lett. 74, 797 (1995).

    PubMed  Google Scholar 

  3. Y. Koike, T. Takabayashi, T. Noji, T. Nishizaki, and N. Kobayashi, Phys. Rev. B 54, 776 (1996).

    Google Scholar 

  4. M. Houssa, M. Ausloos, and M. Pekala, Phys. Rev. B 54, 12713 (1996).

    Google Scholar 

  5. L. Ozyuzer, Z. Yusof, J. F. Zasadzinski, R. Mogilevsky, D. G. Hinks, and K. E. Gray, Phys. Rev. B 57, 3245 (1998).

    Google Scholar 

  6. N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. B 47, 6157 (1993).

    Google Scholar 

  7. N. Bulut, D. J. Scalapino, and S. R. White, J. Supercond. 7, 571 (1994).

    Google Scholar 

  8. S. Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. Lett. 78, 4486 (1997).

    Google Scholar 

  9. P. Monthoux and D. Pines, Phys. Rev. B 49, 4261 (1994).

    Google Scholar 

  10. D. J. Scalapino, Phys. Rep. 250, 329 (1995).

    Google Scholar 

  11. J. H. Kim and Z. Tesanović, Phys. Rev. Lett. 71, 4218 (1993).

    PubMed  Google Scholar 

  12. M. Mierzejewski, J. Zieliński, and P. Entel, Phys. Rev. B 53, 431 (1996).

    Google Scholar 

  13. M. Mierzejewski, and J. Zieliński, and P. Entel, J. Supercond. 9, 81 (1996).

    Google Scholar 

  14. K. I. Wysokiński, Phys. Rev. B 54, 3553 (1996).

    Google Scholar 

  15. M. Mierzejewski, J. Zielński, and P. Entel, Phys. Rev. B 57, 590 (1998).

    Google Scholar 

  16. G. Santi, T. Jarlborg, M. Peter, and M. Weger, J. Supercond. 8, 405 (1995); G. Santi, T. Jarlborg, M. Peter, and M. Weger, Physica C 259, 253 (1996).

    Google Scholar 

  17. C. O'Donovan and J. P. Carbotte, Phys. Rev. B 55, 1200 (1997).

    Google Scholar 

  18. M. Mierzejewski and J. Zieliński, Phys. Rev. B 56, 11925 (1997).

    Google Scholar 

  19. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    Google Scholar 

  20. S. Doniach and E. H. Sondheimer, Green's Functions for Solid State Physicist, Benjamin, New York, 1974.

    Google Scholar 

  21. J. Zieliński, M. Mierzejewski, and P. Entel, Phys. Rev. B 57, 10311 (1998).

    Google Scholar 

  22. J. Beenen and D. M. Edwards, Phys. Rev. B 52, 13636 (1995).

    Google Scholar 

  23. H. Fukuyama and K. Yosida, Jpn. J. Appl. Phys. 26, 1371 (1987).

    Google Scholar 

  24. J. Zieliński, M. Matlak, and P. Entel, Phys. Lett. A 136, 441 (1989).

    Google Scholar 

  25. T. Miyake, T. Matsuura, H. Jichu, and Y. Nagaoka, Prog. Theor. Phys. 72, 1063 (1984).

    Google Scholar 

  26. E. Langmann, J. Lidmar, M. Salmhofer, and M. Wallin, Physica C 296, 119 (1998).

    Google Scholar 

  27. C. A. Balseiro and L. M. Falicov, Phys. Rev. B 20, 4457 (1979).

    Google Scholar 

  28. T. Dahm, D. Manske, and L. Tewordt, J. Low Temp. Phys. 111, 879 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cebula, A., Zieliński, J. D-Wave Superconductivity and Coulomb Correlations in the Two-Dimensional Hubbard Lattice. Journal of Superconductivity 12, 649–654 (1999). https://doi.org/10.1023/A:1007700102368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007700102368

Navigation