Skip to main content
Log in

Modelling the fracture of concrete under mixed loading

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A simple and efficient numerical procedure for mixed mode fracture of quasibrittle materials is shown: This technique predicts crack trajectories as well as load-displacement or load-CMOD responses. The model is based on the cohesive crack concept and uses the local mode I approach. Numerical results agree quite well with three experimental sets of mixed mode fracture of concrete beams; one from Arrea and Ingraffea, another from García, Gettu and Carol and from a nonproportional loading by the authors. In constrast to more sophisticated models, this method offers two major advantages: it requires only material properties measured by standardized methods and it can easily be implemented with general multipurpose finite element codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrea, M. and Ingraffea, A. (1982) Mixed Mode Crack Propagation in Mortar and Concrete, Report 81-13, Dpt. of Structural Engineering, Cornell University.

  • ASTM (1998). Splitting tensile strength of cylindrical concrete specimens. Annual Book of ASTM Standards, ASTM, (2), 337–342.

    Google Scholar 

  • Bažant, Z.P., Kim, J.K., and Pfeiffer, P.A. (1986). Non linear fracture properties from size effect tests. Journal of Structural Engineering 112, 289–307.

    Google Scholar 

  • Bažant, Z.P. and Oh, B. (1983). Crack band theory for fracture of concrete. Materials and Structures 16, 155–177.

    Google Scholar 

  • Bažant, Z.P. and Ožbolt, J. (1990). Nonlocal microplane for fracture, damage and size effect in structures. Journal of Engineering Mechanics 116, 2485–2504.

    Google Scholar 

  • Bažant, Z.P. and Pijaudier-Cabot, G. (1988). Nonlocal continuum damage, localization, stability and convergence, Journal of Applied Mechanics 55, 287–293.

    Google Scholar 

  • Bažant, Z.P. and Planas, J. (1997). Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, New York.

    Google Scholar 

  • Broek, D. (1986). Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publ., Dordrecht, pp. 374–380.

    Google Scholar 

  • Carol, I., Prat, P. and Ló pez, M. (1997). Normal/shear cracking model: Application to discrete crack analysis, Journal of Engineering Mechanics, 123, 765–773.

    Google Scholar 

  • Carpinteri, A. (1994). Cracking of Strain-Softening Materials In: Static and Dynamic Fracture Mechanics (edited by Aliabadi, M.H. et al.) Computational Mechanics Publications, Southampton, pp. 311–365.

    Google Scholar 

  • CEB-FIP (1991). Model Code 1990, Lausanne.

  • Červenka, J. (1994). Discrete crack modelling in concrete structures, Ph. D. Thesis, University of Colorado.

  • Červenka, V. (1970). Inelastic finite element analysis of reinforced concrete panels under in-plane loads, Ph.D. Thesis, University of Colorado.

  • Cope, R., Rao, P., Clark, L. and Norris, P. (1980). Modelling of reinforced concrete behaviour for finite element analysis of bridge slabs. In: Numerical Methods for Non-linear Problems (edited by Taylor C.), Pineridge Press, pp. 457–470.

  • Cornelissen, H., Hordijk, D. and Reinhardt, H. (1986). Experimental determination of crack softening characteristics of normal weight and lightweight concrete. HERON 31(2), 45–56.

    Google Scholar 

  • de Borst, R. and Nauta, P. (1985). Non-orthogonal cracks in a smeared finite element model. Engrg. Computations 2, 35–46.

    Google Scholar 

  • de Borst, R. and Mühlhaus, H. (1992). Gradient dependent plasticity: formulation and algorithmic aspects. International Journal for Numerical Methods in Engineering 35, 521–539.

    Google Scholar 

  • Elices, M. and Planas, J. (1989). Material models. Fracture Mechanics of Concrete Structures, L. Elfgren ed., Chapman and Hall, London, pp. 16–66.

    Google Scholar 

  • Erdogan, F. and Sih, G.C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering 85, 519–527.

    Google Scholar 

  • FRANC2D: A Two-Dimensional Crack-Propagation Simulator, Version 2.7, Wawryzynek, P. and Ingraffea, A.

  • Gálvez, J.C., Elices, M., Guinea, G.V. and Planas, J. (1996). Crack trajectories under mixed mode and non-proportional loading. International Journal of Fracture 81, 171–193.

    Google Scholar 

  • Gálvez, J.C., Elices, M., Guinea, G.V. and Planas, J. (1998). Mixed mode fracture of concrete under proportional and nonproportional loading. International Journal of Fracture 94, 267–284.

    Google Scholar 

  • Gálvez, J.C., Cendó n, D.A., Planas, J., Guinea, G.V. and Elices, M. (1998). Fracture of Concrete under Mixed Loading. Experimental Results and Numerical Prediction In: Fracture Mechanics of Concrete Structures (edited by Mihashi, H. and Rokugo, K.), AEDIFICATIO Publ., pp. 729–738.

  • García, V. (1997). Estudio de la fractura en modo mixto de los materiales cuasifrágiles: aplicació n al hormigó n convencional y al hormigó n de alta resistencia, Ph. D. Thesis, University of Cataluñ a, Spain.

    Google Scholar 

  • Guinea, G.V., Planas, J. and Elices, M. (1994). A general bilinear fit for softening curve of concrete. Materials and Structures, 27, 99–105.

    Google Scholar 

  • Gopalaratnam, V. and Shah, S. (1985). Softening response of plain concrete in direct tension. Structural Journal 82, 310–323.

    Google Scholar 

  • Gupta, A. and Akbar, H. (1984). Cracking in reinforced concrete analysis. Journal of Structural Engineering 110, 1735–1746.

    Google Scholar 

  • Hill, R. (1961). Bifurcation and uniquess in non-linear mechanics continua. Problems in Continuum Mechanics 155–164.

  • Hillerborg, A., Modéer, M. and Petersson, P. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6, 773–782.

    Google Scholar 

  • Petersson, P. (1981). Crack growth and development of fracture zones in plain concrete and similar materials, Report TVBM-1006, Division of Building Materials, Lund Institute of Technology.

  • Mandel, J. (1964). Conditions de stabilité et postulat de Drucker. Rheology and Soil Mechanics, IUTAM Symp., Springer-Verlag, Berlin, pp. 56–68.

    Google Scholar 

  • Planas, J. and Elices, M. (1986). Towards a measure of GF: An analysis of experimental results In: Fracture Toughness and Fracture Energy of Concrete edited by Wittmann F.H.), Elsevier, AMsterdam, pp. 381–390.

    Google Scholar 

  • Rashid, Y. (1968). Analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design, Balkema Ed., pp. 265–286.

  • Reich, R., Plizari, G., Červenka, J. and Saouma, V. (1993). Implementation and validation of a nonlinear fracture model in 2D/3D finite element code. Numerical Models in Fracture Mechanics, Wittmann Ed., Balkema Ed., pp. 265–287.

  • Reinhardt, H. (1984). Fracture mechanics of fictitious crack propagation in concrete. HERON 29(2), 3–42.

    Google Scholar 

  • Riks, E. (1979). An incremental approach to the solution of snapping and buckling problems. Journal of Solids and Structures 15, 529–551.

    Google Scholar 

  • RILEM, 50- FMC Comittee Fracture Mechanics of Concrete (1986). Determination of the fracture energy of mortar and concrete by means of three-point bend tests of notched beams. Matériaux et Constructions 18, 285–290.

    Google Scholar 

  • Rots, J. (1988). Computational modelling of concrete fracture. Ph. D. Thesis, Delft University.

  • Rots, J., Nauta, P., Kursters, G. and Blaauwendraad, J. (1985). Smeared crack approach and fracture localization in concrete. HERON 30, 1–48.

    Google Scholar 

  • Saleh, A. and Aliabadi, M. (1995). Crack growth analysis in concrete using boundary element method. Engineering Fracture Mechanics 51, 533–545.

    Google Scholar 

  • Saleh, A. and Aliabadi, M. (1996). Boundary element analysis of the pullout behaviour of an anchor bolt embedded in concrete. Mechanics of Cohesive-Frictional Materials 1, 235–249.

    Google Scholar 

  • Steinmann, P. and Willam, K. (1994). Finite element analysis of elastoplastic discontinuities. Journal Structural Division 120, 2428–2442.

    Google Scholar 

  • Suidan, M. and Schnobrich, W (1973). Finite element analysis of reinforced concrete. Journal Structural Division 99, 2109–2122.

    Google Scholar 

  • Swartz, S.E. and Taha, M. (1990). Mixed mode crack propagation and fracture in concrete. Engineering Fracture Mechanics 35, 137–144.

    Google Scholar 

  • Schlangen, E. and Van Mier, J.G. (1993). Mixed-mode fracture propagation: a combined numerical and experimental study. Fracture and Damage of Concrete and Rock, 166–175.

  • Valente, S. (1995). On the cohesive crack model in mixed-mode conditions. Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics, E & FN Spon, pp. 66–80.

  • Willam, K., Pramono, E. and Stur, S. (1987). Fundamental issues of smeared crack models. Proc. SEM-RILEM Int. Conf. on Fracture of Concrete and Rock (edited by Shah and Swartz), SEM, pp. 192–207.

  • Willam, K. (1984). Experimental and computational aspects of concrete fracture. Computer Aided Analysis and Design of Concrete Structures (edited by Damjanic, F. et al.), Pineridge Press, pp. 33–70.

  • Xie, M. and Gerstle, W. (1995). Energy-based cohesive crack propagation modeling. Journal of Engineering Mechanics 121, 1349–1358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cendón, D., Gálvez, J., Elices, M. et al. Modelling the fracture of concrete under mixed loading. International Journal of Fracture 103, 293–310 (2000). https://doi.org/10.1023/A:1007687025575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007687025575

Navigation