Skip to main content
Log in

Intralocality Variation in Feeding Biomechanics and Prey Use in Archosargus probatocephalus (Teleostei, Sparidae), with Implications for the Ecomorphology of Fishes

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Archosargus probatocephalusin a Florida estuary was investigated to explore intraspecific variation in prey utilization and jaw biomechanics. Volumetric contribution of major prey types and seven biomechanical features of the oral jaws that characterize prey-capture and processing performance were contrasted between two locations within the estuary. At Mosquito Lagoon, where A. probatocephalusinhabited mostly oyster beds, mangroves and salt marshes, fish consumed mostly thick-shelled bivalves, gastropods, crabs, and tubiculous polychaetes and amphipods. In contrast, conspecifics at Indian River Lagoon that inhabited mostly seagrass beds and algal turf consumed predominantly algae, seagrass, epiphytic invertebrates and small bivalves and gastropods. Difference in magnitude of durophagy between locations was associated with differences in oral-jaw biomechanics. Analyses of covariance indicated that A. probatocephalusat Mosquito Lagoon had more massive jaw muscles and bones, than conspecifics at Indian River Lagoon. Variations in lever ratios for jaw-opening and jaw-closing between locations were not significant. It is hypothesized that intralocality differences in food habits have induced the development of feeding morphologies that enhance the ability of A. probatocephalusto successfully exploit locally dominant prey resources within the estuary. Plasticity of the feeding mechanism of A. probatocephalusmay buffer the species from the adverse effects of settling on heterogeneous habitats that contain variable prey resources such as those found within estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Beecher, R.M., R.S. Corruccini & M. Freeman. 1983. Craniofacial correlates of dietary consistency in a nonhuman primate. J. Craniofacial. Gen. Dev. Biol. 3: 193-202.

    Google Scholar 

  • Bouvier, M. & W.L. Hylander. 1981. Effect of bone strain on cortical bone structure in macaques (Macaca mulatta). J. Morphol. 167: 1-12.

    Google Scholar 

  • Currey, J. 1984. The mechanical adaptations of bones. Princeton University Press, Princeton. 294 pp.

    Google Scholar 

  • Ehlinger, T.J. 1990. Habitat choice and phenotype-limited feeding efficiency in bluegill: individual differences and trophic polymorphism. Ecology 71: 886-896.

    Google Scholar 

  • Felsenstein, J. 1985. Phylogenies and the comparative method. Amer. Nat. 125: 1-15.

    Google Scholar 

  • Felsenstein, J. 1988. Phylogenies and quantitative methods. Ann. Rev. Ecol. Syst. 19: 445-471.

    Google Scholar 

  • Gilhen, J., C.G. Gruchy & D.E. McAllister. 1976. The sheepshead, Archosargus probatocephalus, and the feather blenny, Hypoblennius hentzi, two additions to the Canadian Atlantic ichthyofauna. Canadian Field-Naturalist 90: 42-46.

    Google Scholar 

  • Gilmore, R.G. 1995. Environmental and biogeographic factors influencing ichthyofaunal diversity in the Indian River lagoon. Bull. Mar. Sci. 57: 153-170.

    Google Scholar 

  • Goldspink, G. 1983. Alterations in myofibrilar size and structure during growth, exercise, and changes in environmental temperature. pp. 539-554. In: Skeletal Muscle, Section 10, American Physiological Society, Bethesda.

    Google Scholar 

  • Goldspink, G. & K. Howells. 1974. Work-induced hypertrophy in exercise normal muscles of different ages and the reversibility of hypertrophy after cessation of exercise. J. Physiol. Lond. 239: 179-193.

    Google Scholar 

  • Greenwood, P.H. 1965. Environmental effects on the pharyngeal mill of a cichlid fish, Astatoreochromis alluadiand their taxonomic implications. Proc. Linn. Soc. Lond. 176: 1-10.

    Google Scholar 

  • Hernandez, L.P. & P.J. Motta. 1997. Ontogenetic scaling of oral jaw crushing performance in the sheepshead, Archosargus probatocephalus(Teleostei, Sparidae): trophic consequences of differential performance. J. Zool. Lond. 243: 737-756.

    Google Scholar 

  • Lanyon, L.E. & C.T. Rubin. 1985. Functional adaptation in skeletal structures. pp. 1-25. In: M. Hildebrand, D.M Bramble, K.F. Liem & D.B. Wake (ed.) Functional Vertebrate Morphology, Belknap Press, Cambridge.

    Google Scholar 

  • Lavin, P.A. & J.D. McPhail. 1986. Adaptive divergence of trophic phenotypes among freshwater populations of the threespine stickleback (Gasterosteus aculeatus). Can. J. Fish. Aquat. Sci. 43: 2455-2463.

    Google Scholar 

  • Lindsey, C.C. 1981. Stocks are chameleons: plasticity of gill rakers of coregonid fishes. Can. J. Fish. Aquat. Sci. 38: 1497-1506.

    Google Scholar 

  • Luczkovich, J.J., P.J. Motta, S.F. Norton & K.F. Liem. 1995. Ecomorphology of fishes. Developments in Environmental Biology of Fishes 16, Kluwer Academic Publishers, Dordrecht. 240 pp.

    Google Scholar 

  • Meyer, A. 1990. Ecological and evolutionary aspects of the trophic polymorphism in Cichlasoma citrinellum(Pisces, Cichlidae). Biol. J. Linn. Soc. 39: 279-299.

    Google Scholar 

  • Mittelbach, G.G., C.W. Osenberg & P.C. Wainwright. 1992. Variation in resource abundance affects diet and feeding morphology in the pumpkinseed sunfish (Lepomis gibbosus). Oecologia 90: 8-13.

    Google Scholar 

  • Mittelbach, G.G., C.W. Osenberg & P.C. Wainwright. 1999. Variation in feeding morphology between pumpkinseed populations: phenotypic plasticity or evolution? Evolutionary Ecology Research 1: 111-128.

    Google Scholar 

  • Moore, W.J. 1965. Masticatory function and skull growth. J. Zool. London 146: 123-131.

    Google Scholar 

  • Norton, S.F., J.J. Luczkovich & P.J. Motta. 1995. The role of ecomorphological studies in the comparative biology of fishes. Env. Biol. Fish. 44: 287-304.

    Google Scholar 

  • Ogburn, M.V. 1984. Feeding ecology and the role of algae in the diet of the sheepshead Archosargus probatocephalus(Pisces: Sparidae) on two North Carolina jetties. M.Sc. Thesis, University of North Carolina-Wilmington, Wilmington. 72 pp.

    Google Scholar 

  • Osenberg, C.W., G.G. Mittelbach & P.C. Wainwright. 1992. Two-stage life histories in fish: the interaction between juvenile competition and adult performance. Ecology 73: 255-267.

    Google Scholar 

  • Scheiner, S.M. 1993. Genetics and evolution of phenotypic plasticity. Ann. Rev. Ecol. Syst. 24: 35-68.

    Google Scholar 

  • Schlichting, C. & M. Pigluicci. 1998. Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Sunderland. 387 pp.

    Google Scholar 

  • Schwartz, F.J. 1990. Length-weight, age and growth, and landings observations for sheepshead Archosargus probatocephalusfrom North Carolina. U.S. Fish. Bull. 88: 829-832.

    Google Scholar 

  • Sedberry, G.R. 1987. Feeding habits of sheepshead Archosargus probatocephalus, in offshore reef habitats of the southeastern continental shelf. Northeast Gulf Science 9: 29-37.

    Google Scholar 

  • SkÚlason, S., D.L.G. Noakes & S.S. Snorrason. 1989. Ontogeny of trophic morphology in four sympatric morphs of arctic charr Salvilinus alpinusin Thingvallavatn, Iceland. Biol. J. Linn. Soc. 38: 281-301.

    Google Scholar 

  • Smith, D.W. 1981. Mechanical forces and patterns of deformation. pp. 215-223. In: T.G. Connelly, L.L. Brinkly & B.M. Carlson (ed.) Morphogenesis and Pattern Formation, Raven Press, New York.

    Google Scholar 

  • Smits, J.D. 1996. Trophic flexibility through spatial reallocation of anatomical structures in the cichlid fish Astatoreochromis alluaudi. Ph.D. Dissertation, University of Leiden, Leiden. 124 pp.

    Google Scholar 

  • Sokal, R.R. & F.J. Rohlf. 1995. Biometry, 3rd ed. W.H. Freeman & Company, New York. 887 pp.

    Google Scholar 

  • Stearns, S.C. 1989. The evolutionary significance of phenotypic plasticity. BioScience 39: 436-445.

    Google Scholar 

  • Travis, J. 1994. On the adaptive role of phenotypic plasticity. pp. 99-122. In: P.C. Wainwright & S.M. Reilly (ed.) Ecological Morphology: Integrative Organismal Biology, University of Chicago Press, Chicago.

    Google Scholar 

  • Turingan, R.G. 1994. Ecomorphological relationships among Caribbean tetraodontiform fishes. J. Zool. Lond. 233: 493-521.

    Google Scholar 

  • Turingan, R.G. & P.C. Wainwright. 1993. Morphological and functional bases of durophagy in the queen triggerfish, Balistes vetula(Pisces, Tetraodontiformes). J. Morphol. 215: 101-118.

    Google Scholar 

  • Turingan, R.G., P.C. Wainwright & D.A. Hensley. 1995. Interpopulation variation in prey use and feeding biomechanics in Caribbean triggerfishes. Oecologia 102: 296-304.

    Google Scholar 

  • Via, S. & R. Lande. 1985. Genotype-environment interaction and the evolution of acquired characters. Evolution 39: 505-522.

    Google Scholar 

  • Wainwright, P.C., C.W. Osenberg & G.G. Mittelbach. 1991. Trophic polymorphism in the pumpkinseed sunfish (Lepomis gibbosus): effects of environment on ontogeny. Func. Ecol. 5: 40-55.

    Google Scholar 

  • Wainwright, P.C. & B.A. Richard. 1995. Predicting patterns of prey use from morphology in fishes. Env. Biol. Fish. 44: 97-113.

    Google Scholar 

  • Westneat, M.W. 1995. Phylogenetic systematics and biomechanics in ecomorphology. Env. Biol. Fish. 44: 263-283.

    Google Scholar 

  • Williams, C.K. & R.J. Moore. 1989. Phenotypic adaptation and natural selection in the wild rabbit, Oryctolagus cuniculus, in Australia. J. Anim. Ecol. 58: 495-508.

    Google Scholar 

  • Wimberger, P.H. 1991. Plasticity of jaw and skull morphology in the neotropical cichlids Geophagus brasiliensisand G. steindachneri. Evolution 45: 1545-1563.

    Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97-159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutwa, M.M., Turingan, R.G. Intralocality Variation in Feeding Biomechanics and Prey Use in Archosargus probatocephalus (Teleostei, Sparidae), with Implications for the Ecomorphology of Fishes. Environmental Biology of Fishes 59, 191–198 (2000). https://doi.org/10.1023/A:1007679428331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007679428331

Navigation