Skip to main content
Log in

Prediction of toxicity from chemical structure

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The basis for the prediction of toxicity from chemical structure is that the properties of a chemical are implicit in its molecular structure. Biological activity can be expressed as a function of partition and reactivity, that is, for a chemical to be able to express its toxicity, it must be transported from its site of administration to its site of action and then it must bind to or react with its receptor or target. This process may also involve metabolic transformation of the chemical. The application of these principles to the prediction of the toxicity of new or untested chemicals has been achieved in a number of different ways covering a wide range of complexity, from computer systems containing databases of hundreds of chemicals, to simple "reading across" between chemicals with similar chemical/toxicological functionality. The common feature of the approaches described in this article is that their starting point is a mechanistic hypothesis linking chemical structure and/or functionality with the toxicological endpoint of interest. The prediction of toxicity from chemical structure can make a valuable contribution to the reduction of animal usage in the screening out of potentially toxic chemicals at an early stage and in providing data for making positive classifications of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashby J, Paton D. The influence of chemical structure on the extent and sites of carcinogenesis for 522 rodent carcinogens and 55 different human carcinogen exposures. Mutat Res. 1993;286:3-74.

    PubMed  CAS  Google Scholar 

  • Ashby J, Tennant RW. Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat Res. 1988;204:17-115.

    Article  PubMed  CAS  Google Scholar 

  • Ashby J, Tennant RW, Zeiger E, Stasiewicz S. Classification according to chemical structure, mutagenicity to Salmonella and level of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U.S. National Toxicology Program. Mutat Res. 1989;223:73-103.

    Article  PubMed  CAS  Google Scholar 

  • Barratt MD. Quantitative structure-activity relationships for skin permeability. Toxicol in Vitro. 1995a;9:27-37.

    Article  CAS  Google Scholar 

  • Barratt MD. Quantitative structure activity relationships for skin corrosivity of organic acids, bases and phenols. Toxicol Lett. 1995b;75:169-76.

    Article  PubMed  CAS  Google Scholar 

  • Barratt MD. Quantitative structure-activity relationships for the eye irritation potential of neutral organic chemicals. Toxicol Lett. 1995c;80:69-74.

    Article  PubMed  CAS  Google Scholar 

  • Barratt MD. QSARs for skin corrosivity of organic acids, bases and phenols: principal components and neural network analysis of extended datasets. Toxicol in Vitro. 1996a;10:85-94.

    Article  CAS  Google Scholar 

  • Barratt MD. Quantitative structure activity relationships for skin irritation and corrosivity of neutral and electrophilic organic chemicals. Toxicol in Vitro. 1996b;10:247-56.

    Article  CAS  Google Scholar 

  • Barratt MD. QSARs for the eye irritation potential of neutral organic chemicals. Toxicol in Vitro. 1997;11:1-8.

    Article  CAS  Google Scholar 

  • Barratt MD, Basketter DA, Roberts DW. Skin sensitization structure activity relationships for phenyl benzoates. Toxicol in Vitro. 1994a;8:823-6.

    Article  CAS  Google Scholar 

  • Barratt MD, Basketter DA, Chamberlain M, Admans GD, Langowski JJ. An expert system rulebase for identifying contact allergens. Toxicol in Vitro. 1994b;8:1053-60.

    Article  CAS  Google Scholar 

  • Barratt MD, Langowski JJ. Validation and subsequent development of the DEREK skin sensitization rulebase by analysis of the BgVV list of contact allergens. J Chem Inf Comput Sci. 1999;39:294-8.

    Article  PubMed  CAS  Google Scholar 

  • Barratt MD, Dixit MB, Jones PA. The use of in vitro cytotoxicity measurements in QSAR methods for the prediction of the skin corrosivity potential of acids. Toxicol in Vitro 1996;10:283-90.

    Article  CAS  Google Scholar 

  • Basketter DA, Roberts DW. A quantitative structure activity/dose relationship for contact allergic potential of alkyl group transfer agents. Toxicol in Vitro. 1990;4:686-7.

    Article  Google Scholar 

  • Basketter DA, Roberts DW, Cronin MTD, Scholes EW. The value of the local lymph node assay in quantitative structure activity investigations. Contact Dermatitis. 1992;27:137-42.

    Article  PubMed  CAS  Google Scholar 

  • Basketter DA, Scholes EW. Chamberlain M and Barratt MD. An alternative strategy to the use of guinea pigs for the identification of skin sensitization hazard. Food Chem Toxicol. 1995;33:1051-6.

    Article  PubMed  CAS  Google Scholar 

  • BIBRA Working Group. D and C Red 9. Toxicity profile. The British Industrial Biological Research Association; 1989.

  • Carpenter CP, Smyth HF. Chemical burns of the rabbit cornea. Am J Opthalmol. 1946;49:1363-72.

    Google Scholar 

  • Cherry RJ, Dodd GH, Chapman D. Small molecule-lipid membrane interaction and the puncturing theory of olfaction. Biochim Biophys Acta. 1970;211:409-16.

    Article  PubMed  CAS  Google Scholar 

  • Cronin MTD, Basketter DA. Multivariate QSAR analysis of a skin sensitization database. SAR QSAR Environ Res. 1994; 2:159-79.

    PubMed  CAS  Google Scholar 

  • Dearden JC. Physico-chemical descriptors. In: Karcher W, Devillers J, eds. Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology. Dordrecht, Kluwer Academic Publishers; 1990:25-59.

    Google Scholar 

  • Draize JH, Woodward G, Calvery HO. Methods for the study of irritation and toxicity of substances applied to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82: 377-90.

    CAS  Google Scholar 

  • Dupuis G, Benezra C. Contact dermatitis to simple chemicals: a molecular approach. New York: Marcel Dekker; 1982.

    Google Scholar 

  • ECETOC. Eye Irritation: Reference Compounds Data Bank. Technical Report No. 48. Brussels: European Chemical Industry Ecology and Toxicology Centre; 1992.

  • EEC Commission Directive of 29 July 1983 adapting to technical progress for the fifth time Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. (Annex V). Off J Eur Commun. 1983a; L257:1.

  • EEC. 93/72/EEC. Annex to Commission Directive of 1 September 1993 adapting to technical progress for the nine-teenth time Council Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. Off J Eur Commun. 1993b;L258A: 36.

    Google Scholar 

  • EEC. 84/449/EEC. Commission Directive of 25 April 1984 adapting to technical progress for the sixth time Council Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. Off J Eur Commun. 1984;L251:106-8.

    Google Scholar 

  • Enslein K, Gombar VK, Blake BW. Use of SAR in computer-assisted prediction of carcinogenicity and mutagenicity of chemicals by the TOPKAT program. Mutat Res. 1994;305: 47-61.

    PubMed  CAS  Google Scholar 

  • EPA. Dermal Exposure Assessment: Principles and Applications. EPA/600/8-91/011B: EPA:1992.

  • Flynn GL. Physicochemical determinants of skin absorption. In: Gerrity TR, Henry CJ, eds. Principles of route-to-route extrapolation for risk assessment. New York: Elsevier Science; 1990:93-127.

    Google Scholar 

  • Goodwin BFJ, Johnson AW. Single injection adjuvant test. In: Andersen KE, Maibach HI, eds. Curr Prob Dermatol. 1985; 14:201-7.

  • Hall-Manning TJ, Holland GH, Rennie G, et al. The skin irritation potential of mixed surfactant systems. Food Chem Toxicol. 1998;36:232-8.

    Google Scholar 

  • Hinz RS, Lorence CR, Hodson CD, Hansch C, Hall LL, Guy RH. Percutaneous penetration of para-substituted phenols in vitro. Fundam Appl Toxicol. 1991;17:575-83.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GA, Martens MA. An objective method for the evaluation of eye irritation in vivo. Food Chem Toxicol. 1989;27: 255-8.

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Bangham AD. The action of anaesthetics on phospholipid membranes. Biochim Biophys Acta. 1969; 193:92-104.

    Article  PubMed  CAS  Google Scholar 

  • Kimber I, Weisenberger C. A murine local lymph node assay for the identification of contact allergens: assay development and results of an initial validation study. Arch Toxicol. 1989;63:274-82.

    Article  PubMed  CAS  Google Scholar 

  • Lipnick RL, Bentley JL, Bentley DL. QSAR analysis of ocular toxicity. The 5th International Workshop on QSAR in Environmental Toxicology, Duluth, Minnesota, USA; 1992.

  • Patlewicz GY, Rodford RA, Ellis G, Barratt MD. A QSAR model for the eye irritation of cationic surfactants. Toxicol in Vitro. 2000;14:79-84.

    Article  PubMed  CAS  Google Scholar 

  • Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663-9.

    Article  PubMed  CAS  Google Scholar 

  • Ridings JE, Barratt MD, Cary R, et al. Computer prediction of possible toxic action from chemical structure; an update on the DEREK system. Toxicology. 1996;106:267-79.

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz HS, Klopman G. The application of structural concepts to the prediction of the carcinogenictiy of therapeutic agents. In: Wolff ME, ed. Burgur's medicinal chemistry and drug discovery, vol.1: Principles and practice. New York: Wiley; 1995: 223-49.

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Rumelhart DE, McLelland JL, the PDP Research Group eds. Parallel distributed processing in the microstructures of cognition. Cambridge, MA: MIT Press; 1986:318-62.

    Google Scholar 

  • Sanderson DM, Earnshaw CG. Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum Exp Toxicol. 1991;10:261-73.

    Article  PubMed  CAS  Google Scholar 

  • Smithing MP, Darvas F. Hazard Expert: an expert system for predicting chemical toxicity. In: Finlay JW, Robinson SF, Armstrong DJ, eds. Food safety assessment. Washington, DC: American Chemical Society; 1992:191-200.

    Google Scholar 

  • Suzuki T. Development of an automated estimation system for both partition coefficient and aqueous solubility. J Comp Aided Mol Des. 1991;5:149-66.

    Article  CAS  Google Scholar 

  • Weil CA, Scala RA. Study of intra-laboratory and interlaboratory variability in the results of rabbit eye and skin irritation tests. Toxicol Appl Pharmacol. 1971;19:276-360.

    Article  PubMed  CAS  Google Scholar 

  • Woo Y-T, Lai D, Argus M, Arcos J. Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals. Toxicol Lett. 1995;79:219-28.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barratt, M. Prediction of toxicity from chemical structure. Cell Biol Toxicol 16, 1–13 (2000). https://doi.org/10.1023/A:1007676602908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007676602908

Navigation