Skip to main content
Log in

Isozyme Pattern of Glycogen Phosphorylase in the Rat Nervous System and Rat Astroglia-Rich Primary Cultures: Electrophoretic and Polymerase Chain Reaction Studies

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Of the three isozymes of glycogen phosphorylase (GP) known, the brain (B) and muscle (M) isoforms have been reported to occur in brain. We investigated the regional and cellular occurence of the three isozymes in various parts of the rat nervous system, fetal brain and astroglia-rich primary cultures by means of electrophoresis of native proteins with subsequent activity stain and by reverse transcriptase polymerase chain reaction. In the cortex, cerebellum, olfactory bulb, brainstem, spinal cord and dorsal root ganglia, both mRNA and enzyme protein were found for the B and M isozymes. In addition, the liver (L) isoform mRNA was detected in fetal brain and cultured astrocytes. Our studies indicate that there is no regional difference in distribution pattern between brain regions, spinal cord and dorsal root ganglia. In immature brain and cultured glial cells, the additional presence of the L isozyme is possible. These results support the idea that astrocytes express two or even three GP isozymes simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Henion, H. F. and Sutherland, E. W. 1957. Immunological differences of phosphorylases. J. Biol. Chem. 224:477–488.

    Google Scholar 

  2. Schane, H. P. 1965. Molecular weight estimation of rat uterine phosphorylase. Anal. Biochem. 11:371–394.

    Google Scholar 

  3. Schliselfeld, L. H., Davis, C. H., and Krebs, E. G. 1970. A comparison of phosphorylase isozymes in the rabbit. Biochemistry 9:4959–4965.

    Google Scholar 

  4. Fletterick, R. J., Burke, J. A., Hwang, P. K., Nakono, K., and Newgard, C. B. 1986. Structural relationships in glycogen phosphorylases. Ann. NY Acad. Sci. 478:220–232.

    Google Scholar 

  5. Newgard, C. B., Hwang, P. K., and Fletterick, R. J. 1989. The family of glycogen phosphorylases: structure and function. Crit. Rev. Biochem. Mol. Biol. 24:69–99.

    Google Scholar 

  6. Newgard, C. B., Littman, D. R., van Genderen, C., Smith, M., and Fletterick, R. J. 1988. Human brain glycogen phosphorylase. Cloning, sequence analysis, chromosomal mapping, tissue expression and comparison with the human liver and muscle isozymes. J. Biol. Chem. 263:3850–3857.

    Google Scholar 

  7. Takeo, K. and Nakamura, S. 1972. Dissociation constants of glucan phosphorylases of rabbit tissue studied by polyacrylamide gel disc electrophoresis. Arch. Biochem. Biophys. 153:1–7.

    Google Scholar 

  8. Sato, K., Morris, H. P., and Weinhouse, S. 1972. Phosphorylase: A new isozyme in rat hepatic tumors and fetal liver. Science 178:879–881.

    Google Scholar 

  9. Richter, F., Böhme, H.-J., and Hofmann, E. 1983. Developmental changes of glycogen phosphorylase b isozymes in rat tissues. Biomed. Biochim. Acta 42:1229–1235.

    Google Scholar 

  10. David, E. S. and Crerar, M. M. 1986. Quantitation of muscle glycogen phosphorylase mRNA and enzyme amounts in adult rat tissues. Biochim. Biophys. Acta 880:78–90.

    Google Scholar 

  11. Mayer, D. and Letsch, J. 1991. Resolution of glycogen phosphorylase isozymes in precast PhastSystem polyacrylamide gels. Electrophoresis 12:297–302.

    Google Scholar 

  12. Mayer, D., Seelmann-Eggebert, G., and Letsch, J. 1992. Glycogen phosphorylase isozymes from hepatoma 3924A and from a non-tumorigenic liver cell line. Biochem. J. 282:665–673.

    Google Scholar 

  13. Sato, K. and Weinhouse, S. 1973. Purification and characterization of the Novikoff hepatoma glycogen phosphorylase and ist relations to the fetal form. Arch. Biochem. Biophys. 159:151–159.

    Google Scholar 

  14. Sato, K., Satoh, K., Imai, F., and Morris, H. P. 1976. Isozyme pattern of glycogen phosphorylase in rat tissues and transplantable hepatomas. Cancer Res. 36:478–495.

    Google Scholar 

  15. Takashi, M., Koshikawa, T., Kurobe, N., and Kato, K. 1989. Elevated concentrations of brain type glycogen phosphorylase in renal cell carcinoma. Jpn. J. Cancer Res. 80:975–980.

    Google Scholar 

  16. Uno, K., Shimada, S., Tsuruta, J., Matsuzaki, H., Tashima, S., and Ogawa, M. 1998. Nuclear localization of brain-type glycogen phosphorylase in some gastrointestinal carcinoma. Histochem. J. 30:553–559.

    Google Scholar 

  17. Gorin, F. A., Mullinax, R. L., Ignacio, P. C., Neve, R. L., and Kurnit, D. M. 1987. McArdle's and Hers' diseases: glycogen phoshorylase transcriptional expression in human tissues. J. Neurogen. 4:293–308.

    Google Scholar 

  18. Gelinas, R. P., Froman, B. E., Mc Elroy, F., Tait, R. C., and Gorin, F. A. 1989. Human brain glycogen phosphorylase: characterization of fetal cDNA and genomic sequences. Mol. Brain Res. 6:177–185.

    Google Scholar 

  19. Reinhart, P. H., Pfeiffer, B., Spengler, S., and Hamprecht, B. 1990. Purification of glycogen phosphorylase from bovine brain and immunocytochemical examination of rat primary cultures using monoclonal antibodies raised against the enzyme. J. Neurochem. 54:1474–1483.

    Google Scholar 

  20. Pfeiffer, B., Elmer, K., Roggendorf, W., and Hamprecht, B. 1990. Immunocytochemical demonstration of glycogen phosphorylase in rat brain slices. Histochemistry 94:73–80.

    Google Scholar 

  21. Pfeiffer, B., Meyermann, R., and Hamprecht, B. 1992. Immunohistochemical co-localization of glycogen phosphorylase with the astroglial markers glial fibrillary acidic protein and S-100 protein in rat brain sections. Histochemistry 97:405–412.

    Google Scholar 

  22. Pfeiffer, B., Buse, E., Meyermann, R., Rocha, M. J. A., and Hamprecht, B. 1993. Glycogen phosphorylase activity and immunoreactivity during pre-and postnatal development of rat brain. Histochemistry 100:265–270.

    Google Scholar 

  23. Pfeiffer, B., Buse, E., Meyermann, R., and Hamprecht, B. 1995. Immunocytochemical localization of glycogen phosphorylase in primary sensory ganglia of the peripheral nervous system of the rat. Histochemistry 103:69–74.

    Google Scholar 

  24. Hamprecht, B. and Löffler, F. 1985. Primary glial cultures as a model for studying hormone action. Meth. Enzymol. 109:341–345.

    Google Scholar 

  25. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  26. Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal. Biochem. 162:156–159.

    Google Scholar 

  27. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1973. Molecular Cloning: A laboratory Manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.

    Google Scholar 

  28. Schiebel, K., Pekel, E., and Meyer, D. 1992. The nucleotide sequence of rat liver glycogen phosphorylase cDNA. Biochim. Biophys. Acta 1130:349–351.

    Google Scholar 

  29. Swanson, R. A. 1992. Physiologic coupling of glial glycogen metabolism to neural activity in brain. Can. J. Physiol. Pharmacol. 70:S138-S144.

    Google Scholar 

  30. Dringen, R., Gebhardt, R., and Hamprecht, B. 1993. Glycogen in astrocytes: possible role as lactate supply for neighboring cells. Brain Res. 623:208–214.

    Google Scholar 

  31. Swanson, R. A. and Choi, D. W. 1993. Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J. Cereb. Blood Flow Metab. 13:162–169.

    Google Scholar 

  32. Ransom, B. R. and Fern, R. 1997. Does astrocytic glycogen benefit axon function and survival in CNS white matter during glucose deprivation? Glia 21:134–141.

    Google Scholar 

  33. Wosilait, D. E. and Sutherland, E. W. 1956. The relationship of epinephrine and glycogen to liver phosphorylase. II. Enzymatic inactivation of liver phosphorylase. J. Biol. Chem. 218:469–481.

    Google Scholar 

  34. Appleman, M. M., Krebs, E. G., and Fischer, E. H. 1966. Purification and properties of inactive liver phosphorylase. Biochemistry 5:2101–2107.

    Google Scholar 

  35. Stalmans, W. and Hers, H. G. 1975. The stimulation of liver phosphorylase b by AMP, fluoride and sulfate. Eur. J. Biochem. 54:341–350.

    Google Scholar 

  36. Tan, A. W. and Nuttall, F. Q. 1975. Characteristics of the dephosphorylated form of phosphorylase purified from rat liver and measurement of its activity in crude liver preparations. Biochem. Biophys. Acta 410:45–60.

    Google Scholar 

  37. Ignacio, P. C., Baldwin, B. A., Vijayan, V. K., Tait, R. C., and Gorin, F. A. 1990. Brain isozyme of glycogen phosphorylase: immunohistochemical localization within the central nervous system. Brain Res. 529:42–49.

    Google Scholar 

  38. Kato, K., Shimizu, A., Kurobe, N., Takashi, M., and Koshikawa, T. 1989. Human brain type glycogen phosphorylase: Quantitative localization in human tissues determined with an immunoassay system. J. Neurochem. 52:1425–1432.

    Google Scholar 

  39. Nihira, M., Anderson, K., Gorin, F. A., and Burns, M. S. 1995. Primate rod and cone photoreceptors may differ in glucose accessibility. Invest. Ophthal. Vis. Sci. 36:1259–1270.

    Google Scholar 

  40. Crerar, M. M., Karlsson, O., Fletterick, R. J., and Hwang, P. K. 1995. Chimeric muscle and brain glycogen phosphorylases define protein domains governing isozyme-specific responses to allosteric activation. J. Biol. Chem. 270:13748–13756.

    Google Scholar 

  41. Lowry, O. H., Schulz, D. W., and Passonneau, J. V. 1967. The kinetics of glycogen phosphorylases from brain and muscle. J. Biol. Chem. 242:271–280.

    Google Scholar 

  42. Guenard, D., Morange, M., and Bue, H. 1977. Comparative study of the effect of 5?-AMP and ist analogs on rabbit glycogen phosphorylase b isozymes. Eur. J. Biochem. 76:447–452.

    Google Scholar 

  43. Sorg, O. and Magistretti, P. J. 1991. Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res. 563:227–233.

    Google Scholar 

  44. Sorg, O. and Magistretti, P. J. 1992. Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: Blockade by protein synthesis inhibition. J. Neurosci. 12:4923–4931.

    Google Scholar 

  45. Cardinaux, J.-R. and Magistretti, P. J. 1996. Vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, and noradrenaline induce the transcription factors CCAAT/enhancer binding protein (C/EBP)-? and C/EBP? in mouse cortical astrocytes: involvement in cAMP-regulated glycogen metabolism. J. Neurosci. 16:919–929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer-Guglielmi, B., Bröer, S., Bröer, A. et al. Isozyme Pattern of Glycogen Phosphorylase in the Rat Nervous System and Rat Astroglia-Rich Primary Cultures: Electrophoretic and Polymerase Chain Reaction Studies. Neurochem Res 25, 1485–1491 (2000). https://doi.org/10.1023/A:1007676109206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007676109206

Navigation