Skip to main content
Log in

The Muhly–Renault–Williams Theorem for Lie Groupoids and its Classical Counterpart

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A theorem of Muhly–Renault–Williams states that if two locally compact groupoids with Haar system are Morita equivalent, then their associated convolution C*-algebras are strongly Morita equivalent. We give a new proof of this theorem for Lie groupoids. Subsequently, we prove a counterpart of this theorem in Poisson geometry: If two Morita equivalent Lie groupoids are s-connected and s-simply connected, then their associated Poisson manifolds (viz. the dual bundles to their Lie algebroids) are Morita equivalent in the sense of P. Xu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renault, J.: A Groupoid Approach to C*-Algebras, Lecture Notes in Math. 793, Springer, Berlin, 1980.

    Google Scholar 

  2. Connes, A.: Noncommutative Geometry, Academic Press, San Diego, 1994.

    Google Scholar 

  3. Courant, T. J.: Trans. Amer. Math. Soc. 319 (1990), 631–661.

    Google Scholar 

  4. Coste, A., Dazord, P. and Weinstein, A.: Publ. Dé pt.Math. Univ. C. Bernard—Lyon I 2A (1987), 1–62.

    Google Scholar 

  5. Dazord, P. and Sondaz, D.: Séminaire Sud-Rhodanien (1988), 1–68.

  6. Pradines, J.: C.R. Acad. Sci. Paris A 263 (1966), 907–910.

    Google Scholar 

  7. Mackenzie, K. C. H.: Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  8. Landsman, N. P.: Mathematical Topics Between Classical and Quantum Mechanics, Springer, New York, 1998.

    Google Scholar 

  9. Landsman, N. P.: Comm. Math. Phys. 206 (1999), 367–381.

    Google Scholar 

  10. Landsman, N. P. and Ramazan, B.: In: J. Kaminker, A. Ramsay, J. Renault and A. Weinstein (eds), Proceedings of the Conference on Groupoids in Physics, Analysis and Geometry (Boulder, June 20-24, 1999), Contemp. Math., Amer. Math. Soc., Providence, to appear.

  11. Muhly, P., Renault, J. and Williams, D.: J. Operator Th. 17 (1987), 3–22.

    Google Scholar 

  12. Xu, P.: In: P. Dazord and A. Weinstein (eds), Symplectic Geometry, Groupoids, and Integrable Systems, Springer, New York, 1991, pp. 291–311.

    Google Scholar 

  13. Rieffel, M. A.: J. Pure Appl. Algebra 5 (1974), 51–96.

    Google Scholar 

  14. Xu, P.: Comm. Math. Phys. 142 (1991), 493–509.

    Google Scholar 

  15. Ramazan, B.: Deformation Quantization of Lie—Poisson Manifolds, PhD thesis, Université d'Orlé ans, 1998.

  16. Renault, J.: J. Operator Theory 18 (1987), 67–97.

    Google Scholar 

  17. Mikami, K. and Weinstein, A.: Publ. RIMS Kyoto Univ. 24 (1988), 121–140.

    Google Scholar 

  18. Cannas da Silva, A. and Weinstein, A.: Geometric Models for Noncommutative Geometry, Berkeley Math. Lecture Notes 10, Amer. Math. Soc., Providence, RI, 1999.

    Google Scholar 

  19. Raeburn, I. and Williams, D. P.: Morita Equivalence and Continuous-Trace C*-Algebras, Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar 

  20. Stadler, M. O. and O'Uchi, M.: J. Operator Theory 42 (1999), 103–119.

    Google Scholar 

  21. Green, P.: Acta Math. 140 (1978), 191–250.

    Google Scholar 

  22. Stachura, P.: e-print math.QA/9905097.

  23. Rieffel, M.A.: Adv. Math. 13 (1974), 176–257.

    Google Scholar 

  24. Xu, P.: Ann. Sci. Ecole Norm. Sup. 25 (1992), 307–333.

    Google Scholar 

  25. Dazord, P.: In: Lecture Notes in Math. 1416, Springer, New York, 1990, pp. 39–74.

  26. Mackenzie, K. C. H.: Bull. London Math. Soc. 27 (1995), 97–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landsman, N.P. The Muhly–Renault–Williams Theorem for Lie Groupoids and its Classical Counterpart. Letters in Mathematical Physics 54, 43–59 (2000). https://doi.org/10.1023/A:1007669418336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007669418336

Navigation