Skip to main content
Log in

Deformation Quantization of Hermitian Vector Bundles

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Motivated by deformation quantization, we consider in this paper *-algebras \(\mathcal{A}\) over rings \(C\)=\(R\)(i), where \(R\) is an ordered ring and I2=−1, and study the deformation theory of projective modules over these algebras carrying the additional structure of a (positive) \(\mathcal{A}\)-valued inner product. For A=C (M), M a manifold, these modules can be identified with Hermitian vector bundles E over M. We show that for a fixed Hermitian star product on M, these modules can always be deformed in a unique way, up to (isometric) equivalence. We observe that there is a natural bijection between the sets of equivalence classes of local Hermitian deformations of C (M) and Γ(\(End\left( E \right)\)(E)) and that the corresponding deformed algebras are formally Morita equivalent, an algebraic generalization of strong Morita equivalence of C *-algebras. We also discuss the semi-classical geometry arising from these deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ara, P.: Morita equivalence for rings with involution, Algebras Represent. Theory 2(3) (1999), 227–247.

    Google Scholar 

  2. Bayen, F., Flato, M., Frønsdal, C., Lichnerowicz, A. and Sternheimer, D.: Deformation theory and quantization, Ann. Phys. 111 (1978), 61–151.

    Google Scholar 

  3. Bertelson, M., Cahen, M. and Gutt, S.: Equivalence of star products, Classical Quantum Gravity 14 (1997), A93–A107.

    Google Scholar 

  4. Bordemann, M., Neumaier, N. and Waldmann, S.: Homogeneous Fedosov star products on cotangent bundles I: Weyl and standard ordering with differential operator representation, Comm. Math. Phys. 198 (1998), 363–396.

    Google Scholar 

  5. Bordemann, M., Neumaier, N. and Waldmann, S.: Homogeneous Fedosov star products on cotangent bundles II: GNS representations, the WKB expansion, traces, and applications, J. Geom. Phys. 29 (1999), 199–234.

    Google Scholar 

  6. Bordemann, M. and Waldmann, S.: Formal GNS construction and WKB expansion in deformation quantization, In: D. Sternheimer, J. Rawnsley and S. Gutt (eds.), Deformation Theory and Symplectic Geometry, Math. Phys. Stud. 20, Kluwer Acad. Publ., Dordrecht, 1997, pp. 315–319.

    Google Scholar 

  7. Bordemann, M. and Waldmann, S.: Formal GNS construction and states in deformation quantization, Comm. Math. Phys. 195 (1998), 549–583.

    Google Scholar 

  8. Brzeziński, T. and Majid, S.: Quantum group gauge theory on quantum spaces, Comm. Math. Phys. 157(3) (1993), 591–638.

    Google Scholar 

  9. Bursztyn, H. and Waldmann, S.: Algebraic Rieffel induction, formal morita equivalence and applications to deformation quantization, Preprint math.QA/9912182. To appear in J. Geom. Phys.

  10. Bursztyn, H. and Waldmann, S.: On positive deformations of *-algebras, In: G. Dito and D. Sternheimer (eds), Conference Moshé Flato 1999. Quantization, Deformations and Symmetries, Math. Phys. Stud. 22, Kluwer Acad. Publ., Dordrecht, 2000, pp. 69–80.

    Google Scholar 

  11. Bursztyn, H. and Waldmann, S.: *-Ideals and formal Morita equivalence of *-algebras, Preprint math.QA/0005227. To appear in Internat. J. Math.

  12. Connes, A.: Noncommutative Geometry, Academic Press, San Diego, CA, 1994.

    Google Scholar 

  13. Deligne, P.: Déformations de l'algeèbre des fonctions d'une variété symplectique: comparaison entre Fedosov et De Wilde, Lecomte, Selecta Math. (NS.) 1(4) (1995), 667–697.

    Google Scholar 

  14. DeWilde, M. and Lecomte, P. B. A.: Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487–496.

    Google Scholar 

  15. Emmrich, C. and Römer, H.: Multicomponent Wentzel-Kramers-Brillouin approximation on arbitrary symplectic manifolds: A star product approach, J. Math. Phys. 39(7) (1998), 3530–3546.

    Google Scholar 

  16. Emmrich, C. and Weinstein, A.: Geometry of the transport equation in multicomponent WKB approximations, Comm. Math. Phys. 176(3) (1996), 701–711.

    Google Scholar 

  17. Fedosov, B. V.: A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (1994), 213–238.

    Google Scholar 

  18. Fedosov, B. V.: Deformation Quantization and Index Theory, Akademie-Verlag, Berlin, 1996.

    Google Scholar 

  19. Fernandes, R.: Connections in Poisson geometry I: Holonomy and invariants, math.DG/0001129.

  20. Gerstenhaber, M. and Schack, S. D.: Algebraic cohomology and deformation theory, In: M. Hazewinkel and M. Gerstenhaber (eds): Deformation Theory of Algebras and Structures and Applications, Kluwer Acad. Publ., Dordrecht, 1988, pp. 13–264.

    Google Scholar 

  21. Gutt, S.: Variations on deformation quantization, Preprint ULB math.DG/0003107.

  22. Hawkins, E.: Geometric quantization of vector bundles, math.QA/9808116.

  23. Hawkins, E.: Quantization of equivariant vector bundles, Comm. Math. Phys. 202(3) (1999), 517–546.

    Google Scholar 

  24. Jurco, B., Schupp, P. and Wess, J.: Noncommutative gauge theory for Poisson manifolds, Preprint hep-th/0005005.

  25. Kaplansky, I.: Rings of Operators, Benjamin, New York, 1968.

    Google Scholar 

  26. Karoubi, M.: K-theory, Grundl. Math. Wissen, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  27. Kontsevich, M.: Deformation quantization of Poisson manifolds, I, Preprint q-alg/9709040.

  28. Lam, T. Y.: Lectures on Modules and Rings, Springer-Verlag, New York, 1999.

    Google Scholar 

  29. Lecomte, P. and Roger, C.: Formal deformations of the associative algebra of smooth matrices, Lett. Math. Phys. 15(1) (1988), 55–63.

    Google Scholar 

  30. Madore, J., Schraml, S., Schupp, P. and Wess, J.: Gauge theory on noncommutative spaces, Preprint hep-th/0001203.

  31. Munkres, J. R.: Elementary Differential Topology, Ann. Math. Stud. 54, Princeton Univ. Press, Princeton, NJ, 1963.

    Google Scholar 

  32. Nest, R. and Tsygan, B.: Algebraic index theorem, Comm. Math. Phys. 172 (1995), 223–262.

    Google Scholar 

  33. Nest, R. and Tsygan, B.: Algebraic index theorem for families, Adv. Math. 113 (1995), 151–205.

    Google Scholar 

  34. Neumaier, N.: Local v-Euler derivations and Deligne's characteristic class of Fedosov star products, Preprint Freiburg FR-THEP-99/3, math.QA/9905176.

  35. Omori, H., Maeda, Y. and Yoshioka, A.: Weylmanifolds and deformation quantization, Adv. Math. 85 (1991), 224–255.

    Google Scholar 

  36. Reshetikhin, N., Voronov, A. and Weinstein, A.: Semiquantum geometry, J. Math. Sci. 82(1) (1996), 3255–3267.

    Google Scholar 

  37. Rieffel, M. A.: Morita Equivalence for Operator Algebras, Amer. Math. Soc., Providence, RI, 1982, pp. 285–298

    Google Scholar 

  38. Rieffel, M. A.: Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40(2) (1988), 257–338.

    Google Scholar 

  39. Rosenberg, J.: Rigidity of K-theory under deformation quantization, q-alg/9607021.

  40. Sternheimer, D.: Deformation quantization: Twenty years after, math.QA/9809056.

  41. Vey, J.: Déformation du Crochet de Poisson sur une Variété symplectique, Comm. Math. Helv. 50 (1975), 421–454.

    Google Scholar 

  42. Waldmann, S.: Locality in GNS representations of deformation quantization, Comm. Math. Phys. 210 (2000).

  43. Weinstein, A.: Deformation quantization, Séminaire Bourbaki 46ème année, 789 (1994).

  44. Weinstein, A. and Xu, P.: Hochschild cohomology and characterisic classes for star-products, In: A. Khovanskij, A. Varchenko and V. Vassiliev (eds), Geometry of Differential Equations, Amer. Math. Soc., Providence, 1998, pp. 177–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bursztyn, H., Waldmann, S. Deformation Quantization of Hermitian Vector Bundles. Letters in Mathematical Physics 53, 349–365 (2000). https://doi.org/10.1023/A:1007661703158

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007661703158

Navigation