Skip to main content
Log in

Singleton Field Theory and Flato–Frønsdal Dipole Equation

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study solutions of the equations (△ -λ )φ = 0 and (△ -λ )2φ = 0 in global coordinates on the covering space CAdS d of the d-dimensional Anti de-Sitter space subject to various boundary conditions and their connection to the unitary irreducible representations of \(\overline {{\text{SO}}} _0 \)(d-1,2). The ‘vanishing flux’ boundary conditions at spatial infinity lead to the standard quantization scheme for CAdS d in which solutions of the second- and the fourth-order equations are equivalent. To include fields realizing the singleton unitary representation in the bulk of CAdS d one has to relax the boundary conditions thus allowing for the nontrivial space of solutions of the dipole equation known as the Gupta–Bleuler triplet. We obtain explicit expressions for the modes of the Gupta–Bleuler triplet and the corresponding two-point function. To avoid negative-energy states one must also introduce an additional constraint in the space of solutions of the dipole equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharony, O., Gubser, S. S., Maldacena, J., Ooguri, H. and Oz, Y.: Large N field theories, string theory and gravity, hep-th/9905111.

  2. Balasubramanian, V., Kraus, P. and Lawrence, A.: Bulk vs. boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999), 046003, hep-th/9805171.

  3. Klebanov, I. R. and Witten, E.: AdS/CFT correspondence and symmetry breaking, hep-th/9905104.

  4. Flato, M., Frønsdal, C. and Sternheimer, D.: Singleton physics, hep-th/9901043; Singletons, physics in AdS universe and oscillations of composite neutrinos, Lett. Math. Phys. 48 (1999), 109.

    Google Scholar 

  5. Kogan, I. I.: Singletons and logarithmic CFT in AdS/CFT correspondence, Phys. Lett. B 458 (1999), 66, hep-th/9903162.

    Google Scholar 

  6. Frønsdal, C.: Elementary particles in curved space. 4. Massless particles, Phys.Rev. D 12 (1975), 3819.

    Google Scholar 

  7. Avis, S. J., Isham, C. J. and Storey, D.: Quantum field theory in anti-de Sitter spacetime, Phys. Rev. D 18 (1978), 3565.

    Google Scholar 

  8. Breitenlohner, P. and Freedman, D. Z.: Stability in gauged extended supergravity, Ann. Phys. 144 (1982), 197.

    Google Scholar 

  9. Angelopoulos, E., Flato, M., Frønsdal, C. and Sternheimer, D.: Massless particles, conformal group and De Sitter universe, Phys. Rev. D 23 (1981), 1278.

    Google Scholar 

  10. Castell, L. and Heidenreich, W.: SO(3,2) invariant scattering and dirac singletons, Phys. Rev. D 24 (1981), 371.

    Google Scholar 

  11. Vilenkin, N. and Klimuk, A.: Representations of Lie Groups and Special Functions, Kluwer Acad. Publ., Dordrecht, 1993; Barut, A. and Rãczka, R.: Theory of Group Representations and Applications, Polish Scientific Publishers, Warsaw, 1977.

    Google Scholar 

  12. Minwalla, S.: Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theoret. Math. Phys. 2 (1998), 781, hep-th/9712074.

    Google Scholar 

  13. Evans, N.T.: Discrete series for the universal covering group of the 3 + 2 de Sitter group, J. Math. Phys. 8 (1967), 170. Angelopoulos, E.: \(\overline {SO} \);0 (3, 2): linear and unitary irreducible representations, In: Quantum Theory, Groups, Fields and Particles, Math. Phys. Stud. 4, D. Reidel, Dordrecht, (1983), pp. 101-148.

    Google Scholar 

  14. Angelopoulos, E.: Sur les représentations unitaires irréductibles de \(\overline {SO} \) 0(p, 2), C.R. Acad. Sci. Paris Sér. I Math. 292 (1981), 469-471; Angelopoulos, E. and Laoues, M.: Masslessness in n-dimensions, Rev. Math. Phys. 10 (1998), 271.

    Google Scholar 

  15. Dirac, P. A.M.: A remarkable representation of the 3+2 de Sitter group, J. Math. Phys. 4 (1963), 901.

    Google Scholar 

  16. Günaydin, M. and Warner, N. P.: Unitary supermultiplets of Osp(8/4,R) and the spectrum of the S(7) compactification of eleven-dimensional supergravity, Nuclear Phys. B 272 (1986), 99; Bergshoeff, E., Duff, M. J., Pope, C. N. and Sezgin, E.: Supersymmetric supermembrane vacua and singletons, Phys. Lett. B 199 (1987), 69; Bergshoeff, E., Salam, A., Sezgin, E. and Tanii, Y.: Singletons, higher spin massless states and the supermembrane, Phys. Lett. B 205 (1988), 237.

    Google Scholar 

  17. Flato, M. and Frønsdal, C.: One massless particle equals two Dirac singletons, Lett. Math. Phys. 2 (1978), 421.

    Google Scholar 

  18. Nicolai, H.: Representations of supersymmetry in anti-de Sitter space, In: B. de Wit, P. Fayet, P. van Nieuwenhuizen (eds), Supersymmetry and Supergravity '84, World Scientific, Singapore, 1984.

    Google Scholar 

  19. Ferrara, S., Frønsdal, C. and Zaffaroni, A.: On N = 8 supergravity on AdS(5) and N = 4 superconformal Yang-Mills theory, Nuclear Phys. B 532 (1998), 153, hep-th/9802203; Ferrara, S. and Zaffaroni, A.: Bulk gauge fields in AdS supergravity and supersingletons, hep-th/9807090.

    Google Scholar 

  20. Coddington, E. A. and Levinson, N.: Theory of Ordinary Differential Equations, McGraw-Hill, Englewood Cliffs, 1955.

    Google Scholar 

  21. Birrell, N. D. and Davies, P. C. W.: Quantum Fields in Curved Space, Cambridge Univ. Press, 1982.

  22. Bargmann, V.: Irreducible unitary representations of the Lorentz group, Ann. Math. 48 (1947), 568.

    Google Scholar 

  23. Flato, M. and Frønsdal, C.:Quantum field theory of singletons. TheRac, J. Math. Phys. 22 (1981), 1100.

    Google Scholar 

  24. Frønsdal, C.: Dirac supermultiplet, Phys.Rev. D 26 (1982), 1988.

    Google Scholar 

  25. Flato, M. and Frønsdal, C.: The singleton dipole, Comm. Math. Phys. 108 (1987), 469.

    Google Scholar 

  26. Flato, M. and Frønsdal, C.: Interacting singletons, Lett. Math. Phys. 44 (1998), 249, hep-th/9803013.

    Google Scholar 

  27. Araki, H.: Indecomposable representations with invariant inner product. A theory of the Gupta-Bleuler triplet, Comm. Math. Phys. 97 (1985), 149.

    Google Scholar 

  28. Laoues, M.: Some properties of massless particles in arbitrary dimension, Rev. Math. Phys. 10 (1998), 1079.

    Google Scholar 

  29. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I.: Integraly i ryady. Specialnye funktsii, Nauka, Moscow, 1983. English translation: Integrals and Series. Vol. 2: Special Functions; Vol. 3: More Special Functions, Gordon & Breach, New York, 1988.

    Google Scholar 

  30. Starinets, A.: math-ph/9809014.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starinets, A. Singleton Field Theory and Flato–Frønsdal Dipole Equation. Letters in Mathematical Physics 50, 283–300 (1999). https://doi.org/10.1023/A:1007644223085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007644223085

Navigation