Skip to main content
Log in

Spermine cytotoxicity to human colon carcinoma-derived cells (CaCo-2)

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Spermine is a constituent of all vertebrate cells. Nevertheless, it exerts toxic effects if it accumulates in cells. Spermine is a natural substrate of the FAD-dependent polyamine oxidase, a constitutive enzyme of many cell types. It has been reported that the toxicity of spermine was enhanced if polyamine oxidase was inhibited. We were interested to examine spermine toxicity to human colon carcinoma-derived CaCo-2 cells because, in contrast to most tumor cell lines, CaCo-2 cells undergo differentiation, which is paralleled by changes in polyamine metabolism. CaCo-2 cells were remarkably resistant to spermine accumulation, presumably because spermine is degraded by polyamine oxidase at a rate sufficient to provide spermidine for the maintenance of growth. Inactivation of polyamine oxidase increased the sensitivity to spermine. A major reason for the enhanced spermine cytotoxicity at low polyamine oxidase activity is presumably the profound depletion of spermidine, and the consequent occupation of spermidine binding sites by spermine. Hydrogen peroxide and the aldehydes 3-aminopropanal and 3-acetamidopropanal, the products of polyamine oxidase-catalyzed splitting of spermine and N 1-acetylspermine, contribute little to spermine cytotoxicity. Activation of caspase by spermine was insignificant, and the formation of DNA ladders, another indicator of apoptotic cell death, could not be observed. Thus it appears that cell death due to excessive accumulation of spermine in CaCo-2 cells was mainly nonapoptotic. The content of brush border membranes did not change between days 6 and 8 after seeding, and it was not affected by exposure of the cells to spermine. However, the activities of alkaline phosphatase, sucrase, and aminopeptidase in nontreated cells were considerably enhanced during this period, but remained low if cells were exposed to spermine. These changes appear to indicate that differentiation is prevented by intoxication with spermine, although other explanations cannot be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bey P, Bolkenius FN, Seiler N, Casara P. N-2,3-Butadienyl-1,4-butanediamine derivatives: potent irreversible inactivators of mammalian polyamine oxidase. J Med Chem. 1985;28:1-2.

    Article  PubMed  CAS  Google Scholar 

  • Blais A, Bissonnette B, Berteloot A. Common characteristics for Na+-dependent sugar transport in CaCo-2 cells and human fetal colon. J Membr Biol. 1987;99:113-25.

    Article  PubMed  CAS  Google Scholar 

  • Bolkenius FN, Seiler N. Acetylderivatives as intermediates in polyamine catabolism. Int J Biochem. 1981;13:287-92.

    Article  PubMed  CAS  Google Scholar 

  • Bolkenius FN, Seiler N. Polyamine oxidase inhibitors. In: Sandler M, Smith HJ, eds. Design of enzyme inhibitors as drugs. Oxford: Oxford University Press: 1989:245-56.

    Google Scholar 

  • Brunton VG, Grant MH, Wallace H.M. Mechanism of spermine toxicity in baby hamster kidney (BHK) cells. Biochem J. 1991;280:193-8.

    PubMed  CAS  Google Scholar 

  • Cohen SS. A guide to the polyamines. New York: Oxford University Press; 1998:69-93.

    Google Scholar 

  • D'Agostino L, Daniele B, Pignata S, et al., Ornithine decarboxylase and diamine oxidase in human colon carcinoma cell line CaCo-2 in culture. Gastroenterology. 1989;97:888-94.

    PubMed  Google Scholar 

  • D'Agostino L, Pignata S, Daniele B, et al., Polyamine uptake by human colon carcinoma cell line CaCo-2. Digestion. 1990;46(supplement 2):352-9.

    PubMed  Google Scholar 

  • Dai H, Kramer DL, Yanag C, Murti KG, Porter CW, Cleveland JL. The polyamine oxidase inhibitor MDL 72527 selectively induces apoptosis of transformed hematopoietic cells through lysosomotropic effects. Cancer Res. 1999;59:4944-54.

    PubMed  CAS  Google Scholar 

  • Duranton B, Keith G, GossëF, Bergmann C, Schleifier R, Raul F. Concomitant changes in polyamine pools and DNA methylation during growth inhibition of human colon carcinoma cells. Exp Cell Res. 1998;243:319-25.

    Article  PubMed  CAS  Google Scholar 

  • Flahey KA, Wallace HM. Polyamine oxidase activity in human colonic carcinoma cell line. Biochem Soc Trans. 1990;18: 1225.

    Google Scholar 

  • Fogh J, Fogh JM, Orfeo T. One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977;59:221-6.

    PubMed  CAS  Google Scholar 

  • Garen A, Levinthal C. A fine structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. 1. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960;38:470-83.

    Article  PubMed  CAS  Google Scholar 

  • Grasset E, Pinto M, Dussaulx E, Zweibaum A, Dejeux JF. Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters. Am J Physiol. 1984;247: C260-7.

    PubMed  CAS  Google Scholar 

  • Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res. 1998; 82: 1111-29.

    PubMed  CAS  Google Scholar 

  • Hayashi H, Yoshida H, Hashimoto F, Okazeri, S. Changes in polyamine-oxidizing capacity of peroxisomes under various physiological conditions in rats. Biochim Biophys Acta. 1989;991:10-16.

    Google Scholar 

  • He Y, Kashiwagi K, Fukuchi J, Terao K, Shirahata A, Igarashi K. Correlation between the inhibition of cell growth by accumulation of polyamines and the decrease of magnesium and ATP. Eur J Biochem. 1993;217:89-96.

    Article  PubMed  CAS  Google Scholar 

  • Hölttä E. Oxidation of spermidine and spermine in rat liver: purification of polyamine oxidase. Biochemistry. 1977; 16:91-100.

    Article  PubMed  Google Scholar 

  • Hu RH, Pegg AE. Rapid induction of apoptosis by deregulated uptake of polyamine analogues. Biochem J. 1997;328:307-16.

    PubMed  CAS  Google Scholar 

  • Ientile R, Ginoprelli T, Cannavo G, Picerno I, Piedimonte G. Effect of beta-endorphin on cell growth and cell death in human peripheral blood lymphocytes. J Neuroimmunol. 1997;80:87-92.

    Article  PubMed  CAS  Google Scholar 

  • Lamond S, Wallace HM. Polyamine oxidase activity in human cancer cells. Biochem Soc Trans. 1994;22:396S.

    PubMed  CAS  Google Scholar 

  • Linsalata M, Cavallini A, Di Leo A Polyamine oxidase activity and polyamine levels in human colorectal cancer and in normal surrounding mucosa. Anticancer Res. 1997;17:3757-60.

    PubMed  CAS  Google Scholar 

  • Lowry OG, Rosebrough NJ, Farr AL, Randall RJ. Protein measurements with the Folin phenol reagent. J Biol Chem. 1951;193:265-75.

    PubMed  CAS  Google Scholar 

  • Maroux S, Louvard D, Baratti J. The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta. 1973;321: 282-95.

    PubMed  CAS  Google Scholar 

  • McCann PP, Pegg AE, Sjoerdsma A, eds. Inhibition of polyamine metabolism. Orlando: Academic Press; 1987.

    Google Scholar 

  • Messer M, Dahlqvist A. A one-step ultramicromethod for the assay of intestinal disaccharidases. Anal Biochem. 1966; 193:265-75.

    Google Scholar 

  • Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376:37-43.

    Article  PubMed  CAS  Google Scholar 

  • Parchment, R.E. An overview of the known and suspected mechanisms for control of apoptosis by polyamines and their metabolites. In: Nishioka K, ed. Polyamines in cancer: basic mechanisms and clinical approaches. New York: Springer; 1996: 99-150.

    Google Scholar 

  • Pegg AE. Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res. 1989;48:759-74.

    Google Scholar 

  • Pinto M, Robin-Leon S, Appay MD, et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line CaCo-2 in culture. Biol Cell. 1983;7: 323-30.

    Google Scholar 

  • Poulin R, Pelletier G, Pegg AE. Induction of apoptosis by excessive polyamine accumulation in ornithine decarboxylase-overproducing L1210 cells. Biochem J. 1995;311:723-7.

    PubMed  CAS  Google Scholar 

  • Rasmussen CD, Means AR. Calmodulin, cell growth and gene expression. TINS. 1989;12:433-8.

    PubMed  CAS  Google Scholar 

  • Rousset L. The human colon carcinoma HT-29 and Caco-2: two in vitro models for the study of intestinal differentiation. Biochimie. 1986;68:1035-40.

    PubMed  CAS  Google Scholar 

  • Schmitz J, Preiser H, Maestracci D, Ghosh BK, Cerda JJ, Crane RK. Purification of human intestinal brush border membrane. Biochim Biophys Acta. 1973;323:98-112.

    Article  PubMed  CAS  Google Scholar 

  • Seiler N. Functions of polyamine acetylation. Can J Physiol Pharmacol. 1987;65:2024-35.

    PubMed  CAS  Google Scholar 

  • Seiler, N. Polyamine metabolism. Digestion. 1990;46 (supplement 2):319-30.

    Article  PubMed  CAS  Google Scholar 

  • Seiler N. Pharmacological properties of the natural polyamines and their depletion by biosynthesis inhibitors as a therapeutic approach. In: Jucker E, ed. Progress in drug research. Basel: BirkhÌ user; 1991:107-59.

    Google Scholar 

  • Seiler N. Polyamine catabolism and elimination by the vertebrate organism. In: Dowling RH, Fölsch UR, Löser C, eds. Polyamines in the gastrointestinal tract. Dordrecht: Kluwer Academic Publishers; 1992:65-85.

    Google Scholar 

  • Seiler N. Polyamine oxidase, properties and functions. In: Yu P, Tipton KF, Boulton AA, eds. Current neurochemical and pharmacological aspects of biogenic amines. Amsterdam: Elsevier; 1995:333-44. (Progress in brain research; vol 106).

    Google Scholar 

  • Seiler N, Dezeure F. Polyamine transport in mammalian cells. Int J Biochem. 1990;22:211-18.

    Article  PubMed  CAS  Google Scholar 

  • Seiler N, Bolkenius FN, Knögen B, Mamont P. Polyamine oxidase in rat tissues. Biochim Biophys Acta. 1980;615:480-8.

    PubMed  CAS  Google Scholar 

  • Seiler N, Sarhan S, Grauffel C, Jones R, Knögen B, Moulinoux JP. Endogenous and exogenous polyamines in support of tumor growth. Cancer Res. 1990;50:5077-83.

    PubMed  CAS  Google Scholar 

  • Seiler N, Moulinoux JP, Havouis R, Toujas L. Characterization of amine oxidase activities in macrophages from human peripheral blood. Biochem Cell Biol. 1995;73:275-81.

    Article  PubMed  CAS  Google Scholar 

  • Seiler N, Delcros JG, Moulinoux JP. Polyamine transport in mammalian cells. An update. Int J Biochem Cell Biol. 1996; 28:843-61.

    Article  PubMed  CAS  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anti-cancer drug screening. J Natl Cancer Inst. 1990;82:1107-12.

    PubMed  CAS  Google Scholar 

  • Stefanelli C, Bonavita F, Stanic I, et al. Spermine causes caspase activation in leukaemia cells. FEBS Lett. 1998;437: 233-6.

    Article  PubMed  CAS  Google Scholar 

  • Thornberry NA, Rosen A, Nicholson D. Control of apoptosis by proteases. Adv Pharmacol. 1997;41:155-77.

    PubMed  CAS  Google Scholar 

  • Walters JD, Johnson JD. Inhibition of cyclic phosphodiesterase and calcineurin by spermine, a calcium independent calmodulin antagonist. Biochim Biophys Acta. 1988;957: 138-42.

    PubMed  CAS  Google Scholar 

  • Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous activation. Nature. 1980;284: 555-6.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JRF, Curie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251-306.

    Article  PubMed  CAS  Google Scholar 

  • Xie X, TomëM, Gerner EW. Loss of intracellular putrescine pool-size regulation induces apoptosis. Exp Cell Res. 1997; 230:386-92.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, N., Duranton, B., Gossé, F. et al. Spermine cytotoxicity to human colon carcinoma-derived cells (CaCo-2). Cell Biol Toxicol 16, 117–130 (2000). https://doi.org/10.1023/A:1007642126765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007642126765

Navigation