Skip to main content
Log in

Quantum Structures in Einstein General Relativity

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce the notion of a ‘quantum structure’ on an Einstein general relativistic classical spacetime M. It consists of a line bundle over M equipped with a connection fulfilling certain conditions. We give a necessary and sufficient condition for the existence of quantum structures and classify them. The existence and classification results are analogous to those of geometric quantisation (Kostant and Souriau), but they involve the topology of spacetime, rather than the topology of the configuration space. We provide physically relevant examples, such as the Dirac monopole, the Aharonov–Bohm effect and the Kerr–Newman spacetime. Our formulation is carried out by analogy with the geometric approach to quantum mechanics on a spacetime with absolute time, given by Jadczyk and Modugno.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, C.: Le théoréme de reduction de Marsden–Weinstein en géométrie cosymplectique et de contact, J. Geom. Phys. 6(4) (1989), 627.

    Google Scholar 

  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D.: Deformation theory and quantization I and II, Ann. of Phys. 3 (1978), 61–151.

    Google Scholar 

  3. Canarutto, D., Jadczyk, A. and Modugno, M.: Quantum mechanics of a spin particle in a curved spacetime with absolute time, Rep. Math. Phys. 36(1) (1995), 95–140.

    Google Scholar 

  4. Duval, C., Burdet, G., Künzle, H. P. and Perrin, M.: Bargmann structures and Newton–Cartan theory, Phys. Rev. D 31(8) (1985), 1841–1853.

    Google Scholar 

  5. Duval, C., Gibbons, G. and Horváthy, P.: Celestial mechanics, conformal structures, and gravitational waves, Phys. Rev. D 43 (1991), 3907.

    Google Scholar 

  6. de Leon, M. and Saralegi, M.: Cosymplectic reduction for singular momentum maps, J. Phys. A 26 (1993), 5033–5043.

    Google Scholar 

  7. Duval, C. and Künzle, H. P.: Minimal gravitational coupling in the Newtonian theory and the covariant Schrödinger equation, Gen. Relativity Gravitation 16(4) (1984), 333–347.

    Google Scholar 

  8. Garcia, P. L.: Cuantificion geometrica, Mem. Real Acad. Cienc. Madrid 11 (1979).

  9. Göckeler, M. and Schücker, T.: Differential Geometry, Gauge Theories and Gravity, Cambridge Univ. Press, Cambridge, 1987.

    Google Scholar 

  10. Hawking, S. and Ellis, G.: The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, 1973.

    Google Scholar 

  11. Horvathy, P. and Kollar, J.: The nonabelian Bohm–Aharonov effect in geometric quantisation Classical Quantum Gravity 1(6) (1984), 61–66.

    Google Scholar 

  12. Jadczyk, A. and Modugno, M.: A scheme for Galilei general relativistic quantum mechanics, In: Proc. 10th Italian Conf. General Relativity and Gravitational Physics, World Scientific, New York, 1993.

    Google Scholar 

  13. Modugno, M.: Galilei General Relativistic Quantum Mechanics, 1999, book in preparation.

  14. Janyška, J.: Remarks on symplectic and contact 2-forms in relativistic theories, Boll. Un. Mat. Ital. 7 (1994), 587–616.

    Google Scholar 

  15. Janyška, J.: Natural Lagrangians for quantum structures over 4-dimensional spaces, Rend. Mat. Appl. (7) 18 (1998), 623–648.

    Google Scholar 

  16. Janyška, J. and Modugno, M.: Classical particle phase space in general relativity, In: Proc. ‘Differential Geom. Appl.’, Brno, 1995.

  17. Janyška, J. and Modugno, M.: Quantisable functions in general relativity, In: Proc. ‘Diff. Oper. Math. Phys.’, Coimbra, World Scientific, Singapore, 1995.

    Google Scholar 

  18. Janyška, J. and Modugno, M.: On quantum vector fields in general relativistic quantum mechanics, In: Proc. Conf. Differential Geom., Sibiu, Romania, Sept. 1997.

  19. Kostant, B.: Quantization and unitary representations, In: Lectures in Modern Analysis and Applications III, Springer-Verlag, New York, 1970, pp. 87–207.

    Google Scholar 

  20. Kuchař, K.: Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev. D 22(6) (1980), 1285–1299.

    Google Scholar 

  21. Künzle, H. P.: General covariance and minimal gravitational coupling in Newtonian spacetime, In: A. Prastaro (ed.), Geometrodynamics Proceedings, Tecnoprint, Bologna, 1984, pp. 37–48.

    Google Scholar 

  22. Libermann, P. and Marle, Ch. M.: Symplectic Geometry and Analytical Mechanics, D. Reidel Publ., Dordrecht, 1987.

    Google Scholar 

  23. Misner, W., Thorne, K. and Wheeler, J.: Gravitation, Freeman, San Francisco, 1978.

    Google Scholar 

  24. Modugno, M. and Vinogradov, A. M.: Some variations on the notions of connection, Ann. Mat. Pura Appl. (4), 167 (1994), 33–71.

    Google Scholar 

  25. Modugno, M. and Vitolo, R.: Quantum connection and Poincaré–Cartan form, In: G. Ferrarese (ed.), Proc. Conf. in honour of A. Lichnerowicz, Frascati, October 1995; Pitagora, Bologna.

  26. Prugovečki, E.: Principles of Quantum General Relativity, World Scientific, Singapore, 1995.

    Google Scholar 

  27. Schmutzer, E. and Plebanski, J.: Quantum mechanics in non-inertial frames of reference, Fortschr. Phys. 25 (1977), 37–82.

    Google Scholar 

  28. Sniaticki, J.: Geometric Quantization and Quantum Mechanics, Springer-Verlag, New York, 1980.

    Google Scholar 

  29. Souriau, J.-M.: Structures des systèmes dynamiques, Dunod, Paris, 1970.

  30. Trautman, A.: Comparison of Newtonian and relativistic theories of space-time, In: Perspectives in Geometry and Relativity (Essays in Honour of V. Hlavaty), 42, Indiana Univ. Press, 1966, pp. 413–425.

    Google Scholar 

  31. Tulczyjew, W. M.: An intrinsic formulation of nonrelativistic analytical mechanics and wave mechanics, J. Geom. Phys. 2(3) (1985), 93–105.

    Google Scholar 

  32. Vitolo, R.: Bicomplessi lagrangiani ed applicazioni alla meccanica relativistica classica e quantistica, PhD Thesis, Florence, 1996.

  33. Vitolo, R.: Quantum structures in general relativistic theories, Proc. Ital. Conf. Gen. Relativity and Gravitation Phys. (Rome, 1996), World Scientific, Singapore, 1998.

    Google Scholar 

  34. Vitolo, R.: Quantum structures in Galilei general relativity, Ann. Inst. H. Poincaré 70(3) (1999).

  35. Vitolo, R.: Quantising a rigid body, to appear in Proc. ‘Differential Geom. and Appl.’, Brno, 1998.

  36. Wells, R. O.: Differential Analysis on Complex Manifolds, Grad. Texts Math. 65, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  37. Woodhouse, N.: Geometric Quantization, 2nd edn, Clarendon Press, Oxford, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitolo, R. Quantum Structures in Einstein General Relativity. Letters in Mathematical Physics 51, 119–133 (2000). https://doi.org/10.1023/A:1007624902983

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007624902983

Navigation