Skip to main content
Log in

An anisotropic Gurson type model to represent the ductile rupture of hydrided Zircaloy-4 sheets

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The aim of this work is to model the ductile fracture of Zircaloy-4 sheets containing various amount of embrittling hydride precipitates. The proposed model is based on the Gurson–Tvergaard–Needleman model which is extended to take into account plastic anisotropy and viscoplasticity. The mechanical behavior is identified by conducting tensile tests and the damage nucleation rate (hydride cracking) is measured using quantitative metallography. The model is then used in a Finite Element software to represent crack propagation in Center Crack Panel specimens. Results are strongly mesh size dependent. The mesh size has to be identified by comparison with experimental results. Finally the model is validated by simulating crack initiation and growth in moderately complex structures (sheets containing holes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perovic, V. and Weatherly, G.C. (1984). The nucleation of hydrides in a Zr-2.5 wt.% Nb alloy. Journal of Nuclear Material 126, 160–169.

    Google Scholar 

  2. Coleman, C.E. and Hardie, D. (1966). The hydrogen embrittlement of α-zirconium - a review. Journal of Less Common Metals 11, 168–185.

    Google Scholar 

  3. Northwood, D.O. and Kosasih, U. (1983). Hydrides and delayed hydrogen cracking in zirconium and its alloys. International Metal Reviews 28(2), 29–121.

    Google Scholar 

  4. Yunchang, F. and Koss, D.A. (1985). The influence of multiaxial states of stress on the hydrogen embrittlement of zirconium alloy sheet. Met. Trans. A 16A, 675–681.

    Google Scholar 

  5. Puls, M.P. (1988). The influence of hydride size and matrix strength on fracture initiation at hydrides in zirconium alloys. Met. Trans. A. 19A, 1507–1522.

    Google Scholar 

  6. Puls, M.P. (1991). Fracture initiation at hydrides in zirconium. Met. Trans A 22A, 2327–2337.

    Google Scholar 

  7. Bai, J.B., Prioul, C., and François, D. (1994). Hydride embrittlement in Zircaloy-4 Plate: Part I. Influence of microstructure on the hydride embrittlement in Zircaloy-4 at 20 °C and 350 °C. Met. Trans. A 25A, 1185–1197.

    Google Scholar 

  8. Bai, J.B., Ji, D., Gilbon, C., Prioul, C., and François, D. (1994). Hydride embrittlement in Zircaloy-4 Plate: Part II. Interaction between the tensile stress and the hydride morphology. Met. Trans. A 25A, 1199–1208.

    Google Scholar 

  9. Prat, F., Grange, M., Besson, J., and Andrieu, E. (1998). Behavior and rupture of hydrided Zircaloy-4 tubes and sheets. Met. Trans 29A, 1643–1651.

    Google Scholar 

  10. Grange, M., Besson, J., and Andrieu, E. (2000). Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Met. and Mat. Trans A 31A, 679–690.

    Google Scholar 

  11. Tvergaard, V. and Needleman, A. (1984). Analysis of cup-cone fracture in a round tensile bar. Acta metall. 32, 157–169.

    Google Scholar 

  12. Lemaitre, J. (1985). A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology, Trans. ASME 107, 83–89.

    Google Scholar 

  13. Rousselier, G. (1987). Ductile fracture models and their potential in local approach of fracture. Nuclear Engineering and Design 105, 97–111.

    Google Scholar 

  14. Saanouni, K., Chaboche, J.L., and Lesne, P.M. (1989). On the creep crack growth prediction by a non local damage formulation. European Journal of Mechanics, A/Solids 8(6), 437–459.

    Google Scholar 

  15. Gurson, A.L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I - Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology 99, 2–15.

    Google Scholar 

  16. Rice, J.R. and Tracey, D.M. (1969). On the enlargement of voids in triaxial stress fields. Journal of Mech. Phys. Sol. 17, 201–217.

    Google Scholar 

  17. McClintock, F.A. (1971). Plasticity aspects of fracture, pages 47–218. Academic Press.

  18. Tvergaard, V. (1990). Material failure by void growth to coalescence. Advances in Applied Mechanics 27, 83–151.

    Google Scholar 

  19. Devillers-Guerville, L., Besson, J., and Pineau, A. (1997). Notch fracture toughness of a cast duplex stainless steel: modelling of experimental scatter and size effect. Nuclear Engineering and Design 168, 211–225.

    Google Scholar 

  20. Decamp, K., Bauvineau, L., Besson, J., and Pineau, A. (1998). Size and geometry effects on ductile rupture of notched bars in a C-Mn steel: Experiments and modelling. International Journal of Fracture 88(1), 1–18.

    Google Scholar 

  21. Huez, J., Feaugas, X., Helbert, A.L., Guillot, I., and Clavel, M. (1998). Damage process in commercially pure α-Titanium alloy without (Ti40) and with (Ti40-H) hydrides. Met. Trans. A 29A, 1615–1628.

    Google Scholar 

  22. Devaux, J.C., Mudry, F., Pineau, A., and Rousselier, G. (1989). Experimental and numerical validation of a ductile fracture criterion based on a simulation of cavity growth. In J.D. Landes, A. Saxena, and J.G. Merkle, editors, Nonlinear Fracture Mechanics: Volume II - Elastic-Plastic Fracture, pages 7–23. ASTM STP 995.

  23. Xia, L., Shih, C.F., and Hutchinson, J.W. (1995). A computational approach to ductile crack growth under large scale yielding conditions. Journal of Mech. Phys. Solids 43(3), 389–413.

    Google Scholar 

  24. Bazant, Z.P. and Pijaudier-Cabot, G. (1988). Non local continuum damage. localization, instability and convergence. Journal of Applied Mechanics, ASME 55, 287–294.

    Google Scholar 

  25. Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., De Vree, J.H.P., and Spee, I. (1996). Some observations on localisation in non-local and gradient damage models. European Journal of Mechanics, A/Solids 15(6).

  26. Bradbrook, J.S., Lorimer, G.W., and Ridley, N. (1972). The precipitation of zirconium hydride in zirconium and Zircaloy-2. Journal of Nuclear Materials 42, 142–160.

    Google Scholar 

  27. Perovic, V., Weatherly, G.C., and Simpson, C.S. (1983). Hydride precipitation in α / β zirconium alloys. Acta Met. 31(9), 1381–1391.

    Google Scholar 

  28. Grange, M. (1998). Fragilisation du Zircaloy-4 par l'hydrogène. PhD thesis, Ecole des Mines de Paris.

  29. Delobelle, P., Robinet, P., Geyer, P., and Bouffioux, P. (1996). A model to descibe the anisotropic viscoplastic behavior of zircaloy-4 tubes. Journal of Nuclear Materials 238, 135–162.

    Google Scholar 

  30. Koplik, J. and Needleman, A. (1988). Void growth and coalescence in porous plastic solids. International Journal of Solids Structures, pages 835–853.

  31. Green, R.J. (1972). A plasticity theory for porous solids. International Journal of Mechanical Sciences 14, 215–224.

    Google Scholar 

  32. Shima, S. and Oyane, M. (1976). Plasticity theory for porous metals. International Journal of Mechanical Sciences 18, 285–291.

    Google Scholar 

  33. Abouaf, M., Chenot, J.L., Raisson, G., and Bauduin, P. (1988). Finite element simulation of hot isostatic pressing of metal powders. International Journal of Numerical Methods Engineering 25(1), 191–212.

    Google Scholar 

  34. Besson, J. and Abouaf, M. (1992). Rheology of porous alumina and simulation of hot isostatic pressing. Journal of American Ceramic Society 75, 2165–2172.

    Google Scholar 

  35. Doege, E., El-Dsoki, T., and Seibert, D. (1995). Prediction of necking and wrinkling in sheet-metal forming. Journal of Material Processing Technology 50, 197–206.

    Google Scholar 

  36. Benzerga, A., Besson, J., and Pineau, A. (1997). Modèle couplé comportement-endommagement ductile de tôles anisotropes. In: Actes du Troisième Colloque National en Calcul des Structures, pages 673–678. Presses Académiques de l'Ouest, May 20-23.

  37. Hill, R. (1950). The mathematical theory of plasticity. Clarendon Press, Oxford.

    Google Scholar 

  38. Gologanu, M., Leblond, J.B., and Devaux, J. (1994). Approximate models for ductile metals containing non-spherical voids - case of axisymmetric oblate ellipsoidal cavities. Trans. ASME, Journal of Engineering Materials Technololgy 116, 290–297.

    Google Scholar 

  39. Gologanu, M. (1997). Étude des quelques problèmes de rupture ductile des métaux. PhD thesis, Université Paris 6.

  40. Foerch, R., Besson, J., Cailletaud, G., and Pilvin, P. (1997). Polymorphic constitutive equations in finite element codes. Computer Methods in Applied Mechanics and Engineering 141, 355–372.

    Google Scholar 

  41. Besson, J., Le Riche, R., Foerch, R., and Cailletaud, G. (1998). Application of object-oriented programming techniques to the finite element method. Part II - Application to material behaviors. Revue européenne des éléments finis 7(5), 567–588.

    Google Scholar 

  42. Simo, J.C. and Taylor, R.L. (1985). Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering 48, 101–118.

    Google Scholar 

  43. Aravas, N. (1987). On the numerical integration of a class of pressure-dependent plasticity models. International Journal of Numerical Mathematical Engineering 24, 1395–1416.

    Google Scholar 

  44. Besson, J. and Foerch, R. (1997). Large Scale Object-Oriented Finite Element Code Design. Computer Methods in Applied Mechanics and Engineering 142, 165–187.

    Google Scholar 

  45. Perrin, G. and Leblond, J.-B. (1990). Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension - application to some problems in ductile fracture of metals. International Journal of Plasticity 6(6), 677–699.

    Google Scholar 

  46. Becker, R., Needleman, A., Richmond, O., and Tvergaard, V. (1988). Void growth and failure in notched bars. Journal of Mechanical Physics and Solids 36, 317–351.

    Google Scholar 

  47. Liu, Y., Murakami, S., and Kanagawa, Y. (1994). Mesh-dependence and stress singularity in finite element analysis of creep crack growth by continuum damage mechanics approach. European Journal of Mechanics, A/Solids 13(3), 395–417.

    Google Scholar 

  48. D'Escatha, Y. and Devaux, J.C. (1979). Numerical study of initiation, stable crack growth, and maximum load, with a ductile fracture criterion based on the growth of holes. In Elastic-Plastic Fracture, J.D. Landes, (edited by J.A. Begley, and G.A. Clarke), ASTM STP 668, pp. 229–248.

  49. Doghri, I. and Billardon, R. (1995). Investigation of localization due to damage in elasto-plastic materials. Mechanics of Materials 19, 129–149.

    Google Scholar 

  50. Kanninen, M.F. and Popelar, C.H. (1985). Advance fracture mechanics. Oxforf University Press, New York.

    Google Scholar 

  51. Jain, M., Allin, J., and Lloyd, D.J. (1999). Fracture limit prediction using ductile fracture criteria for forming of an automotive aluminum sheet. International Journal of Mechanical Sciences 41, 1273–1288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grange, M., Besson, J. & Andrieu, E. An anisotropic Gurson type model to represent the ductile rupture of hydrided Zircaloy-4 sheets. International Journal of Fracture 105, 273–293 (2000). https://doi.org/10.1023/A:1007615513884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007615513884

Navigation