Skip to main content
Log in

Differential toxicity of anticancer drugs on late (GM-CFC) and early (LTC-IC) hemopoietic progenitors in vitro

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The clinical hematological toxicity of cytotoxic drugs can be acute, with a nadir of neutrophil count after 2 weeks and recovery the following week, or subacute, with a nadir of neutrophil count after 3 weeks and recovery in the following 2–3 weeks. The explanation usually given for this difference is that drugs in the first group are more toxic to mature hemopoietic precursors, while drugs of the second type are more toxic to undifferentiated cells. In an attempt to verify this hypothesis, we compared in vitro the effect of toxic doses of etoposide and tallimustine as representatives of drugs with acute toxicity, and of BCNU, melphalan, and carzelesin as representatives of drugs with subacute toxicity. Their effects were studied separately on more differentiated and earlier progenitors represented by granulocyte–macrophage colony-forming cells (GM-CFC) and long-term culture-initiating cells (LTC-IC), respectively. Etoposide, melphalan, BCNU, and carzelesin showed higher toxicity in differentiated than in early precursors: the concentration of drug inhibiting 70% (ID70) of GM-CFC inhibited only by 10–40% the growth of LTC-IC. Tallimustine, in contrast, inhibited both GM-CFC and LTC-IC at comparable levels. These results do not correspond to the clinical pattern of myelotoxicity observed for those drugs. We conclude that the differential effects of antitumor drugs on later (GM-CFC) or earlier (LTC-IC) hemopoietic precursors may not represent a valid model for the pattern of myelotoxicity observed in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afan AM, Broome CS, Nicholls SE, Whetton AD, Miyan JA. Bone marrow innervation regulates cellular retention in the murine haemopoietic system. Br J Haematol. 1997;98:569–77.

    Article  PubMed  CAS  Google Scholar 

  • Berardi AC, Wang A, Levine JD, Lopez P, Scadden DT. Functional isolation and characterisation of human hemopoietic stem cells. Science. 1995;267:104–8.

    PubMed  CAS  Google Scholar 

  • Bertolini F, Battaglia M, Lanza A, et al. Multilineage long-term engraftment potential of drug-resistant hemopoietic progenitors. Blood. 1997;90:3027–36.

    PubMed  CAS  Google Scholar 

  • Clark BR, Gallagher JT, Dexter TM. Cell adhesion in the stromal regulation of haemopoiesis. In: Baillière's Clinical Haematology. London: Baillière Tindall; 1992: 619–52.

    Google Scholar 

  • Coutinho LH, Will A, Radford J, Schiroò R, Testa NG, Dexter TM. Effects of recombinant human granulocyte colonystimulating factor (CSF), human granulocyte macrophage-CSF, and gibbon interleukin-3 on hematopoiesis in human long-term bone marrow culture. Blood. 1999;75:2118–29.

    Google Scholar 

  • Coutinho LH, Gilleece MH, De Wynter EA, Will A, Testa NG. Clonal and long-term cultures using human bone marrow. In: Testa NG, Molineux G, eds. Haemopoiesis. A practical approach. New York: Oxford University Press; 75–105.

  • Domenech J, Gihana E, Dayan A, et al. Haemopoiesis of transplanted patients with autologous marrows assessed by long-term marrow culture. Br J Haematol. 1994;88:488–96.

    PubMed  CAS  Google Scholar 

  • Genevay MC, Mormont C, Thomas F, Berthier R. The synthetic tetrapeptide AcSDKP protects cells that reconstitute long-term bone marrow stromal cultures from the effects of mafosfamide (Asta Z 7654). Exp Hematol. 1996;24:77–81.

    PubMed  CAS  Google Scholar 

  • Ghielmini M, Bosshard G, Capolongo L, et al. Estimation of the haematological toxicity of minor groove alkylators using tests on human cord blood cells. Br J Cancer. 1997;75:878–83.

    PubMed  CAS  Google Scholar 

  • Ghielmini M, Colli E, Bosshard G, et al. Hematotoxicity on human bone marrow and umbilical cord blood-derived progenitor cells and in vitro therapeutic index of methoxy-morpholinyldoxorubicin and its metabolites. Cancer Chemother Pharmacol. 1998;42:235–40.

    Article  PubMed  CAS  Google Scholar 

  • Gibson FM, Bagnara M, Ioannidou E, Gordon-Smith EC. Interaction of granulocyte-macrophage colony-stimulating factor and interleukin 3 in human long-term bone marrow culture. Exp Hematol. 1992;20:235–40.

    PubMed  CAS  Google Scholar 

  • Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord-blood transplantation from related and unrelated donors. N Engl J Med. 1997;337:373–81.

    Article  PubMed  CAS  Google Scholar 

  • Gordon MY. Biology of haematopoietic stem cells. In: Wunder EW, Henon PR, eds. Peripheral blood stem cell autografts. Berlin: Springer Verlag; 1993:26–34.

    Google Scholar 

  • Gordon MY. The bone marrow stromal microenvironment. In: Burnett A, Armitage J, Newland A, Keating A, eds. Hematological oncology. Cambridge: Cambridge University Press; 1994:73–94.

    Google Scholar 

  • Gribaldo L, Bueren J, Deldar A, et al. The use of in vitro systems for evaluating haematotoxicity. The report and recommendations of ECVAM workshop 14. ATLA. 1996;24:211–31.

  • Gribaldo L, Casati S, Castoldi AF, Pessina A. Comparison of in vitro drug-sensitivity of human granulocyte-macrophage progenitors from two different origins: umbilical cord blood and bone marrow. Exp Hematol. 1999;27:1593–8.

    Article  PubMed  CAS  Google Scholar 

  • Gurney H, Dodwell D, Thatcher N, Tattersall MHN. Escalating drug delivery in cancer chemotherapy: a review of concepts and practice — part 1. Ann Oncol. 1993;4:23–34.

    PubMed  CAS  Google Scholar 

  • Hoagland HC. Hematologic complications of cancer chemotherapy. In: Satterfield TS, ed. The chemotherapy source book. Baltimore: William and Wilkins; 1990:498–507.

    Google Scholar 

  • Hong DS, Beckham C, Huss R, et al. Major histocompatibility complex class II-mediated inhibition of hematopoiesis in long-term marrow cultures involves apoptosis and is prevented by c-kit ligand. Blood. 1995;86:3341–52.

    PubMed  CAS  Google Scholar 

  • Hows JM, Bradley BA, Marsh JCW, et al. Growth of human umbilical-cord blood in longterm haemopoietic cultures. Lancet. 1992;340:73–5.

    Article  PubMed  CAS  Google Scholar 

  • Lewis JL, Blackett NM, Gordon MY. The kinetics of colony formation by CFU-GM in vitro. Br J Haematol. 1994;88:440–2.

    PubMed  CAS  Google Scholar 

  • Léglise MC, Darodes de Tailly P, Vignot JL, Le Bot MA, Le Roux A-M, Riché C. A cellular model for drug interactions on hematopoiesis: the use of human umbilical cord blood progenitors as a model for the study of drug-related myelosuppression. Cell Biol Toxicol. 1996;12:39–53.

    Article  PubMed  Google Scholar 

  • Lévesque J, Haylock DN, Simmons PJ. Cytokine regulation of proliferation and cell adhesion are correlated events in human CD34+ hemopoietic progenitors. Blood. 1996;88:1168–76.

    PubMed  Google Scholar 

  • Li J, Sensebe L, Hervé P, Charbord P. Nontransformed colonyderived stromal cell lines from normal human marrows. III. The maintenance of hematopoiesis from CD34+ cell populations. Exp Hematol. 1997;25:582–91.

    PubMed  CAS  Google Scholar 

  • Linenberger ML, Jacobsen FW, Bennett LG, Broudy VC, Martin FH, Abkowitz JL. Stem cell factor production by human marrow stromal fibroblasts. Exp Hematol. 1995;23:1104–14.

    PubMed  CAS  Google Scholar 

  • Naughton BA, Sibanda B, Azar L, San Roman J. Differential effects of drugs upon hematopoiesis can be assessed in longterm bone marrow cultures established on nylon screens. Proc Soc Exp Biol Med. 1992;199:481–90.

    PubMed  CAS  Google Scholar 

  • Neter J, Wasserman W, Kutner MH. Applied linear statistical models. 1985. Irwin Publisher, Homewood, Illinois.

    Google Scholar 

  • Nishi N, Ishikawa R, Inoue H, et al. Granulocyte-colony stimulating factor and stem cell factor are the crucial factors in long-term culture of human primitive hematopoietic cells supported by a murine stromal cell line. Exp Hematol. 1996;24:1312–21.

    PubMed  CAS  Google Scholar 

  • Parchment RE, Huang M, Erickson-Miller CI. Roles for in vitro myelotoxicity tests in preclinical drug development and clinical trial planning. Toxicol Pathol. 1993;21:241–50.

    Article  PubMed  CAS  Google Scholar 

  • Parchment RE, LoRusso PM, Volpe DA, Erickson-Miller CI, Murphy MJJ, Grieshaber CK. In vivo-in vitro correlation of myelotoxicity of 9-methoxypyrazoloacridine (NSC-366140, PD115934) to myeloid and erythroid hematopoietic progenitors from human, murine, and canine marrow. J Natl Cancer Inst. 1994;86:273–80.

    PubMed  CAS  Google Scholar 

  • Parchment RE, Gordon M, Grieshaber CK, Sessa C, Volpe D, Ghielmini M. Predicting hematological toxicity (myelo-suppression) of cytotoxic drug therapy from in vitro tests. Ann Oncol. 1998;9:357–64.

    Article  PubMed  CAS  Google Scholar 

  • Pettengell R, Luft T, Henschler R, et al. Direct comparison by limiting dilution analysis of long-term culture-initiating cells in human bone marrow, umbilical cord blood, and blood stem cells. Blood. 1994;84:3653–9.

    PubMed  CAS  Google Scholar 

  • Qi DY, Hendry JH, Testa NG. Interactions in recovery and in residual injury from sequential treatments of mouse haemopoietic and stromal marrow cell population, using X-rays, cyclophosphamide and busulphan. Radiother Oncol. 1991;20:46–52.

    Article  PubMed  CAS  Google Scholar 

  • Radford JA, Testa NG, Crowther D. The long-term effects of MVPP chemotherapy for Hodgkin's disease on bone marrow function. Br J Cancer. 1990;62:127–32.

    PubMed  CAS  Google Scholar 

  • Sessa C, Pagani O, Zurlo MG, et al. Phase I study of the novel distamycin derivative tallimustine (FCE 24517). Ann Oncol. 1994;5:901–7.

    PubMed  CAS  Google Scholar 

  • Stata Statistical Software. Stata Corp.; 1997. College Station, Texax.

  • Sutherland HJ, Eaves CJ, Lansdorp PM, Thacker JD, Hogge DE. Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood. 1991;78:666–72.

    PubMed  CAS  Google Scholar 

  • Testa NG, Hendry JH, Molineaux G. Long-term bone marrow damage in experimental systems and in patients after radiation or chemotherapy. Anticancer Res. 1985;5:101–10.

    PubMed  CAS  Google Scholar 

  • Testa NG, de Wynter E, Weaver A. The study of haematopoietic stem cells in patients: concepts, approaches and cautionary tales. Ann Oncol. 1996;7:5–8.

    PubMed  Google Scholar 

  • Thalmeier K, Meissner P, Reisbach G, Falk M, Brechtel A, Dörmer P. Establishment of two permanent human bone marrow stromal cell lines with long-term post irradiation feeder capacity. Blood. 1994;83:1799–807.

    PubMed  CAS  Google Scholar 

  • Uhlman DL, Verfaillie C, Jones RB, Luikart SD. BCNU treatment of marrow stromal monolayers reversibly alters haematopoiesis. Br J Haematol. 1991;78:304–9.

    PubMed  CAS  Google Scholar 

  • Van Zant G, de Haan G, Rich IN. Alternatives to stem cell renewal from a developmental viewpoint. Exp Hematol. 1997;25:187–92.

    PubMed  CAS  Google Scholar 

  • Wang JCY, Doedens M, Dick JE. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood. 1997;89:3919–24.

    PubMed  CAS  Google Scholar 

  • Weaver A, Ryder WDJ, Testa NG. Measurement of long-term culture initiating cells (LTC-ICs) using limiting dilution: comparison of endpoints and stromal support. Exp Hematol. 1997;25:1333–8.

    PubMed  CAS  Google Scholar 

  • Williams LH, Udupa KB, Lipschitz DA. Long-term bone marrow culture as a model for host toxicity: the effect of methotrexate on hematopoiesis and adherent layer function. Exp Hematol. 1988;16:80–7.

    PubMed  CAS  Google Scholar 

  • Wolff I, Bench K, Beijnen J, et al. Phase I clinical and pharmacokinetic study of carzelesin (U-80244) given on a daily × 5 schedule. Cancer Chemother Pharmacol. 1996;2:1717–23.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghielmini, M., Bosshard, G., Pampallona, S. et al. Differential toxicity of anticancer drugs on late (GM-CFC) and early (LTC-IC) hemopoietic progenitors in vitro. Cell Biol Toxicol 15, 395–404 (1999). https://doi.org/10.1023/A:1007610117810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007610117810

Navigation