Pharmaceutical Research

, Volume 17, Issue 12, pp 1511–1515 | Cite as

Hepatic Disposition of Fexofenadine: Influence of the Transport Inhibitors Erythromycin and Dibromosulphothalein

  • Robert W. Milne
  • Linda A. Larsen
  • Klaus L. Jørgensen
  • Jesper Bastlund
  • Graham R. Stretch
  • Allan M. Evans


Purpose. To examine the disposition of fexofenadine in the isolated perfused rat liver and the influence of erythromycin and dibromosulphthalein (DBSP) on the hepatic uptake and biliary excretion of fexofenadine.

Methods. Livers from four groups of rats were perfused in a recirculatory manner with fexofenadine HCl added as a bolus (125, 250, 500, or 1000 μg) to perfusate. Livers from another three groups of rats were perfused with 250 μg of fexofenadine HCl. With one group as control, erythromycin (4.0 μg/ml) or DBSP (136 μg/ml) was added to the perfusate of the other groups. In all experiments, perfusate and bile were collected for 60 min; in addition, livers from the second experiment were retained for assay. Fexofenadine was determined in perfusate, bile, and homogenized liver by HPLC.

Results. The area under the curve (AUC) of fexofenadine was linearly related to concentration. It was unchanged from control (12,800 ± 200 ng·h/ml) by erythromycin (14,400 ± 2000 ng·h/ml), but was increased 95% by DBSP (25,000 ± 2600 ng·h/ml, P <0.001). The ratios of the concentrations of fexofenadine in liver/perfusate were decreased significantly by DBSP; those for bile/liver were increased by erythromycin.

Conclusions. Erythromycin reduced the canalicular transport of fexofenadine into bile, whereas DBSP reduced uptake across the sinusoidal membrane.

fexofenadine hepatic transport inhibition erythromycin dibromosulphothalein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Russell, M. Stoltz, and S. Weir. Pharmacokinetics, pharmacodynamics, and tolerance of single-and multiple-dose fexofenadine hydrochloride in healthy male volunteers. Clin. Pharmacol. Ther. 64:612–621 (1998).Google Scholar
  2. 2.
    C. M. Pratt, J. Mason, T. Russell, R. Reynolds, and R. Ahlbrandt. Cardiovascular safety of fexofenadine HCl. Am. J. Cardiol. 83: 1451–1454 (1999).Google Scholar
  3. 3.
    C. Lippert, J. Ling, P. Brown, S. Burmaster, M. Eller, L. Cheng, R. Thompson, and S. Weir. Mass balance and pharmacokinetics of MDL 16,455A in healthy male volunteers. Pharm. Res. 13(suppl. 9):S-390 (1996).Google Scholar
  4. 4.
    K. T. Kivisto, P. J. Neuvonen, and U. Klotz. Inhibition of terfenadine metabolism. Pharmacokinetic and pharmacodynamic consequences. Clin. Pharmacokinet. 27:1–5 (1994).Google Scholar
  5. 5.
    P. K. Honig, D. C. Wortham, R. Hull, K. Zamani, J. E. Smith, and L. R. Cantilena. Itraconazole affects single-dose terfenadine pharmacokinetics and cardiac repolarization pharmacodynamics. J. Clin. Pharmacol. 33:1201–1206 (1993).Google Scholar
  6. 6.
    P. K. Honig, D. C. Wortham, K. Zamani, J. C. Mullin, D. P. Conner, and L. R. Cantilena. The effect of fluconazole on the steady-state pharmacokinetics and electrocardiac pharmacodynamics of terfenadine in humans. Clin. Pharmacol. Ther. 53:630–636 (1993).Google Scholar
  7. 7.
    M. Takano, R. Hasegawa, T. Fukuda, R. Yumoto, J. Nagai, and T. Murakami. Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur. J. Pharmacol. 358:289–294 (1998).Google Scholar
  8. 8.
    R. B. Kim, C. Wandel, B. Leake, M. Cvetkovic, M. F. Fromm, P. J. Dempsey, M. M. Roden, F. Belas, A. K. Chaudhary, D. M. Roden, A. J. J. Wood, and G. R. Wilkinson. Interrelationship between substrates and inhibitors of human CYP3A and Pglycoprotein. Pharm. Res. 16:408–414 (1999).Google Scholar
  9. 9.
    A. Soldner, U. Christians, M. Susanto, V. J. Wacher, J. A. Silverman, and L. Z. Benet. Grapefruit juice exerts stimulatory effects on P-glycoprotein. Clin. Pharmacol. Ther. 65:205 (1999).Google Scholar
  10. 10.
    M. Cvetkovic, B. Leake, M. F. Fromm, G. R. Wilkinson, and R. B. Kim. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos. 27:866–871 (1999).Google Scholar
  11. 11.
    M. Müller and P. L. M. Jansen. Molecular aspects of hepatobiliary transport. Am. J. Physiol. 272:G1285–G1303 (1997).Google Scholar
  12. 12.
    H. M. J. Nijssen, T. Pijning, D. K. F. Meijer, and G. M. M. Groothuis. Mechanistic aspects of uptake and sinusoidal efflux of dibromosulfophthalein in the isolated perfused rat liver. Biochem. Pharmacol. 42:1997–2002 (1991).Google Scholar
  13. 13.
    Approved Product Information. Telfast Capsules. Hoechst Marion Roussel, Lane Cove, Australia.Google Scholar
  14. 14.
    A. M. Evans and K. Shanahan. The disposition of morphine and its metabolites in the in-situ rat isolated perfused liver. J. Pharm. Pharmacol. 47:333–339 (1995).Google Scholar
  15. 15.
    R. A. Okerholm, D. L. Weiner, R. H. Hook, B. J. Walker, G. A. Leeson, S. A. Biedenbach, M. J. Cawein, T. D. Dusebout, and G. J. Wright. Bioavailability of terfenadine in man. Biopharm. Drug Dispos. 2:185–190 (1981).Google Scholar
  16. 16.
    D. A. Garteiz, R. H. Hook, B. J. Walker, and R. A. Okerholm. Pharmacokinetics and biotransformation studies of terfenadine in man. Arzneimittelforschung 32:1185–1190 (1982).Google Scholar
  17. 17.
    P. K. Honig, R. L. Woosley, K. Zamani, D. P. Conner, and L. R. Cantilena. Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin. Pharmacol. Ther. 52:231–238 (1992).Google Scholar
  18. 18.
    P. K. Honig, D. C. Wortham, K. Zamani, D. P. Conner, J. C. Mullin, and L. R. Cantilena. Terfenadine-ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. JAMA 269:1513–1518 (1993).Google Scholar
  19. 19.
    C. D. Klaassen and G. L. Plaa. Hepatic disposition of phenoldibromphthalein disulfonate and sulfobromophthalein. Am. J. Physiol. 215:971–976 (1986).Google Scholar
  20. 20.
    M. Yamazaki, H. Suzuki, Y. Sugiyama, T. Iga, and M. Hanano. Uptake of organic anions by isolated rat hepatocytes. A classification in terms of ATP-dependency. J. Hepatol. 14:41–47 (1992).Google Scholar
  21. 21.
    H. Kouzuki, H. Suzuki, B. Stieger, P. J. Meier, and Y. Sugiyama. Characterization of the transport properties of organic anion transporting polypeptide 1 (oatp1) and Na+/taurocholate cotransporting polypeptide (Ntcp): comparative studies on the inhibitory effects of their possible substrates in hepatocytes and cDNA-transfected COS-7 cells. J. Pharmacol. Exp. Ther. 292: 505–511 (2000).Google Scholar
  22. 22.
    K. Sathirakul, H. Suzuki, T. Tamada, M. Hanano, and Y. Sugiyama. Multiple transport systems for organic anions across bile canalicular membrane. J. Pharmacol. Exp. Ther. 268:65–73 (1994).Google Scholar
  23. 23.
    A. Blom, A. H. J. Scaf, and D. K. F. Meijer. Hepatic drug transport in the rat. A comparison between isolated hepatocytes, the isolated perfused liver and the liver in vivo. Biochem. Pharmacol. 31:1553–1565 (1982).Google Scholar
  24. 24.
    R. B. Kim, M. F. Fromm, C. Wandel, B. Leake, A. J. J. Wood, D. M. Roden, and G. R. Wilkinson. The drug transporter Pglycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest. 101:289–294 (1998).Google Scholar
  25. 25.
    J. D. Whisnant, G. H. Hurst, and K. I. R. Brouwer. Fexofenadine (Fex) disposition in the isolated perfused rat liver (IPL): effects of ketoconazole (Ket) and erythromycin (Ery). Pharm. Res. 14(suppl.):S-560 (1997).Google Scholar
  26. 26.
    E. G. Scheutz, K. Yasuda, K. Arimori, and J. D. Scheutz. Human MDR1 and mouse mdr1 P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid and benzo(a)pyrene. Arch. Biochem. Biophys. 350:340–347 (1998).Google Scholar
  27. 27.
    D. J. Birkett, R. A. Robson, N. Grgurinovich, and A. Tonkin. Single dose pharmacokinetics of erythromycin and roxithromycin and the effects of chronic dosing. Ther. Drug Monitoring 12:65–71 (1990).Google Scholar
  28. 28.
    M. M. Gottesman and I. Pastan. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62:385–427 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Robert W. Milne
    • 1
  • Linda A. Larsen
    • 2
  • Klaus L. Jørgensen
    • 2
  • Jesper Bastlund
    • 2
  • Graham R. Stretch
    • 2
  • Allan M. Evans
    • 2
  1. 1.Centre for Pharmaceutical Research, School of Pharmacy and Medical ScienceUniversity of South AustraliaAdelaideAustralia
  2. 2.Centre for Pharmaceutical Research, School of Pharmacy and Medical ScienceUniversity of South AustraliaAdelaideAustralia

Personalised recommendations