Skip to main content
Log in

Quantum Field Theories on an Algebraic Curve

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate quantum field theories on an algebraic curve and outline a 'paradigm' interpreting Ward identities as reciprocity laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witten, E.: Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351–399.

    Google Scholar 

  2. Donaldson, S.: The Seiberg–Witten equations and 4-manifolds topology, Bull. Amer. Math. Soc. (N.S.) 33 (1996), 45–70.

    Google Scholar 

  3. Witten, E.: Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 769–796.

    Google Scholar 

  4. Frenkel, I., Lepowsky, J., and Meurman, A.: Vertex Operator Algebras and the Monster, Academic Press, Boston, 1988.

    Google Scholar 

  5. Witten, E.: Two-dimensional quantum gravity and intersection theory on moduli space, Surv. Differential Geom. 1 (1991), 243–310.

    Google Scholar 

  6. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1–23.

    Google Scholar 

  7. Manin Yu. I. and Zograf, P.: Invertible cohomological field theories and Weil–Petersson volumes, Preprint math.AG/9902051.

  8. Zograf P. and Takhtajan, L.: Action of the Liouville equation is a generating function for the accessory parameters and potential of the Weil–Petersson metric on the Teichmüller space, Funct. Anal. Appl. 19 (1985), 219–220.

    Google Scholar 

  9. Takhtajan, L.: Topics in quantum geometry of Riemann surfaces: two-dimensional quantum gravity, In: L. Castellani and E. Wess, (eds), Quantum Groups and their Applications in Physics (Varenna, 1994), Proc. Internat. School Phys. Enrico Fermi, 127, IOS, Amsterdam, 1996, pp. 541–579.

    Google Scholar 

  10. Dito, G., Flato, M., Sternheimer, D., and Takhtajan, L.: Deformation quantization and Nambu mechanics, Comm. Math. Phys. 183 (1997), 1–22.

    Google Scholar 

  11. Tate, J.: Residues of differentials on curves, Ann. Sci. ÉcoleNorm. Sup. 1 (1968), 149–159.

    Google Scholar 

  12. Arbarello, E., De Concini C., and Kac, V.: The infinite wedge representation and the reciprocity law for algebraic curves, In: Theta Functions–Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math. 49, Amer. Math. Soc., Providence, RI, 1989, pp. 171–190.

    Google Scholar 

  13. Kazhdan, D.: Lecture on the AMS Summer Research Institute 'Theta Functions', Bowdoin College, Maine 1987 (unpublished).

    Google Scholar 

  14. Witten, E.: Quantum field theory, Grassmannians, and algebraic curves, Comm. Math. Phys. 113 (1988), 529–600.

    Google Scholar 

  15. Witten, E.: Free fermions on an algebraic curve, In: The mathematical heritage of Hermann Weyl (Durham, NC, 1987), Proc. Sympos. Pure Math. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 329–344.

    Google Scholar 

  16. Garland, H. and Zuckerman, G.: Representations of Heisenberg systems and vertex operators, In: Complex Geometry and Lie Theory (Sundance, UT, 1989), Proc. Sympos. Pure Math. 53, Amer. Math. Soc., Providence, RI, 1991, pp. 135–150.

    Google Scholar 

  17. Beilinson, A., Feigin, B., and Mazur, B.: Introduction to algebraic field theory on curves, Unpublished manuscript.

  18. Raina, A.: Fay's trisecant identity and conformal field theory, Comm. Math. Phys. 122 (1989), 625–641.

    Google Scholar 

  19. Raina, A.: An algebraic geometry study of the bc system with arbitrary twist fields and arbitrary statistics, Comm. Math. Phys. 140 (1991), 373–397.

    Google Scholar 

  20. Beilinson, A. and Drinfeld, V.: Chiral algebras I., Unpublished manuscript.

  21. Beilinson, A. and Drinfeld, V: Quantization of Hitchin's integrable system and Hecke eigensheaves, Unpublished manuscript.

  22. Gaitsgory, D.: Notes on 2d conformal field theory and string theory. In: P. Deligne et al. (eds), Quantum Fields and Strings. A Course for Mathematicians, Amer. Math. Soc., Providence, RI, 1999, pp. 1017–1089.

    Google Scholar 

  23. Artin, E. and J. Tate, J.: Class Field Theory, W. A. Benjamin, New York, 1968.

    Google Scholar 

  24. Belavin, A., Polyakov A., and Zamolodchikov, A.: Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), 333–380.

    Google Scholar 

  25. Iwasawa, K.: Algebraic Functions, Transl. Math. Monogr. 118, Amer. Math. Soc., Providence, RI, 1993.

    Google Scholar 

  26. Serre, J.-P.: Groupes algébriques et corps de classes, Hermann, Paris, 1959.

    Google Scholar 

  27. Serre, J.-P.: Local Fields, GTM 67, Springer-Verlag, New York, 1979.

    Google Scholar 

  28. Artin, E.: Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967.

    Google Scholar 

  29. Sen, S. and Raina, A.: Grassmannians, multiplicative Ward identities and theta-function identities, Phys. Lett. B 203 (1988), 256–262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takhtajan, L.A. Quantum Field Theories on an Algebraic Curve. Letters in Mathematical Physics 52, 79–91 (2000). https://doi.org/10.1023/A:1007605903393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007605903393

Navigation