Skip to main content
Log in

Tolerance of forced air emergence by a fish with a broad vertical distribution, the rockpool blenny, Hypsoblennius gilberti (Blenniidae)

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Many intertidal fishes, particularly among the Blenniidae and Cottidae, possess amphibious adaptations, including the ability to breathe in air and to avoid desiccation in terrestrial conditions. These traits are absent in subtidal species of blennies and cottids. Hypsoblennius gilberti, the rockpool blenny, is found in shallow rockpools in the mid to high intertidal areas of Southern California, and deeper to 18 m in the subtidal zone. This broad vertical distribution could indicate that this blenny is adapted for tidal air emergence, although H. gilberti has not been observed out of water in its natural habitat. H. gilberti does not emerge voluntarily from hypoxic sea water in the laboratory, but it easily withstands 3 h out of water. The aerial respiratory exchange ratio (CO2 released compared to O2 consumed) is 0.70, similar to that of amphibious intertidal fishes in air, indicating sufficient release of metabolically produced CO2 while emerged. There is no increase in aquatic respiration following emergence. However, unlike other amphibious fishes that maintain aerial oxygen consumption at a level similar to aquatic oxygen consumption, H. gilberti has an aerial oxygen consumption rate one-third that in water. H. gilberti can recover rapidly from terrestrial water loss, and shows no change in evaporative water loss rates at 93% and 77% relative humidities. The amphibious capabilities in H. gilberti, even if rarely used, permit survival in air during tidal emergence. These findings suggest that H. gilberti may demonstrate an intermediate condition between the amphibious species of intertidal fishes that regularly emerge from water, and the subtidal fishes that do not survive air emergence and are completely restricted to an aquatic habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Bartholomew, G.A. 1982. Energy metabolism. pp. 46–92. In: M.S. Gordon (ed.) Animal Physiology, Macmillan Publishing, New York.

    Google Scholar 

  • Bartholomew, G.A., D. Vleck & C.M. Vleck. 1981. Instantaneous measurements of oxygen consumption during pre-flight warm-up and post-flight cooling in sphingid and saturnid moths. J. Exp. Biol. 90: 17–32.

    Google Scholar 

  • Bennett, A.F. 1978. Activity metabolism of the lower vertebrates. Ann. Rev. Physiol. 400: 447–469.

    Google Scholar 

  • Bridges, C.R. 1988. Respiratory adaptations in intertidal fish. Amer. Zool. 28: 79–96.

    Google Scholar 

  • Bridges, C.R. 1993. Adaptations of vertebrates to the intertidal environment. pp. 12–22. In: J. Eduardo & P.W. Bicudo (ed.) The Vertebrate Gas Transport Cascade \3-Adaptations to Environment and Mode of Life, CRC Press, Boca Raton.

    Google Scholar 

  • Bridges, C.R., A.C. Taylor, S.J. Morris & M.K. Grieshaber. 1984. Ecophysiological adaptations in Blennius pholis (L.) blood to intertidal rockpool environments. J. Exp. Mar. Biol. Ecol. 77: 151–167.

    Google Scholar 

  • Brown, C.R., M.S. Gordon & K.L.M. Martin. 1992. Aerial and aquatic oxygen uptake in the amphibious Red Sea rockskipper fish, Alticus kirki (family Blenniidae). Copeia 1992: 1007–1013.

    Google Scholar 

  • Davenport, J. & A.D. Woolmington. 1981. Behavioural responses of some rocky shore fish exposed to adverse environmental conditions. Mar. Behav. Physiol. 8: 1–12.

    Google Scholar 

  • Daxboeck, C. & T.A. Heming. 1982. Bimodal respiration in the intertidal fish, Xiphister atropurpureus (Kittlitz). Mar. Behav. Physiol. 9: 23–33.

    Google Scholar 

  • Eschmeyer, W.N. & E.S. Herald. 1983. A field guide to Pacific coast fishes, Houghton Mifflin Co., Boston. 336 pp.

    Google Scholar 

  • Fitch, J.E. & R.J. Lavenberg. 1975. Tidepool and nearshore fishes of California. California Natural History Guides 38, University of California Press, Berkeley. 176 pp.

    Google Scholar 

  • Gibson, R.N. 1982. Recent studies on the biology of intertidal fishes. Oceanogr. Mar. Biol. Ann. Rev. 20: 363–414.

    Google Scholar 

  • Graham, J.B. 1973. Terrestrial life of the amphibious fish Mnierpes macrocephalus. Marine Biology 23: 83–91.

    Google Scholar 

  • Graham, J.B. 1976. Respiratory adaptations of marine air-breathing fishes. pp. 165–187. In: G.M. Hughes (ed.) Respiration of Amphibious Vertebrates, Academic Press, London.

    Google Scholar 

  • Graham, J.B. 1997. Air-breathing fishes. Academic Press, San Diego. 299 pp.

    Google Scholar 

  • Graham, J.B., C.B. Jones & I. Rubinoff. 1985. Behavioural, physiological, and ecological aspects of the amphibious life of the pearl blenny Entomacrodus nigricans Gill. J. Exp. Mar. Biol. Ecol. 89: 255–268.

    Google Scholar 

  • Hill, J.V., W. Davison & I.D. Marsden. 1996. Aspects of the respiratory biology of two New Zealand intertidal fishes, Acanthoclinus fuscus and Forsterygion sp. Env. Biol. Fish. 45: 85–93.

    Google Scholar 

  • Horn, M.H. & K.C. Riegle. 1981. Evaporative water loss and intertidal vertical distribution in relation to body size and morphology of stichaeoid fishes from California. J. Exp. Mar. Biol. Ecol. 50: 273–288.

    Google Scholar 

  • Louisy, P. 1987. Observations sur l'emersion nocturne de deux blennies Mediterraneennes: Coryphoblennius galerita et Blennius trigloides (Pisces, Perciformes). Cybium 11: 55–73.

    Google Scholar 

  • Martin, K.L.M. 1991. Facultative aerial respiration in an intertidal sculpin, Clinocottus analis (Scorpaeniformes: Cottidae). Physiol. Zool. 64: 1341–1355.

    Google Scholar 

  • Martin, K.L.M. 1993. Aerial release of CO2 and respiratory exchange ratio in intertidal fishes out of water. Env. Biol. Fish. 37: 189–196.

    Google Scholar 

  • Martin, K.L.M. 1995. Time and tide wait for no fish: intertidal fishes out of water. Env. Biol. Fish. 44: 165–181.

    Google Scholar 

  • Martin, K.L.M. 1996. An ecological gradient in air-breathing ability among marine cottid fishes. Physiol. Zool. 69: 1096–1113.

    Google Scholar 

  • Martin, K.L.M. & J.R.B. Lighton. 1989. Aerial CO2 and O2 exchange during terrestrial activity in an amphibious fish, Alticus kirki (Blenniidae). Copeia 1989: 723–727.

    Google Scholar 

  • Nieder, J. & C.D. Zander. 1994. Nocturnal activity of a blenny Lipophrys trigloides (Pisces, Blenniidae) at the Spanish Mediterranean coast. Misc. Zool. 17: 189–197.

    Google Scholar 

  • Pelster, B., C.R. Bridges & M.K. Grieshaber. 1988. Physiological adaptations of the intertidal rockpool teleost Blennius pholis L., to aerial exposure. Respir. Physiol. 71: 355–374.

    Google Scholar 

  • Randall, D.J., W.W. Burggren, A.P. Farrell & M.S. Haswell. 1981. The evolution of air-breathing in vertebrates. Cambridge University Press, London. 133 pp.

    Google Scholar 

  • Sayer, M.D.J. & J. Davenport. 1991. Amphibious fish: why do they leave water? Rev. Fish Biol. Fisheries 1: 159–181.

    Google Scholar 

  • Truchot, J.P. & A. Duhamel-Jouve. 1980. Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools. Respir. Physiol. 39: 241–254.

    Google Scholar 

  • Wright, W.G. & J.A. Raymond. 1978. Air-breathing in a California sculpin. J. Exp. Zool. 203: 171–176.

    Google Scholar 

  • Yoshiyama, R.M. & J.J. Cech, Jr. 1994. Aerial respiration by rocky intertidal fishes of California-Oregon. Copeia 1994: 153–158.

    Google Scholar 

  • Yoshiyama, R.M., C.J. Valpey, L.L. Schalk, N.M. Oswald, K.K. Vaness, D. Lauritzen & M. Limm. 1995. Differential propensities for aerial emergence in intertidal sculpins (Teleoster, Cottidae). J. Exp. Mar. Biol. Ecol. 191: 195–207.

    Google Scholar 

  • Zander, C.D. 1967. Beitrage zur Okologie und Biologie litoralbewohnender Salariidae und Gobiidae (Pisces) aus dem Roten Meer. Wiss. Ergebn. dt. Exped. \lsMeteor\rs D2: 69–84.

    Google Scholar 

  • Zander, C.D. 1972. Beziehungen zwischen Korperbau und Lebensweise bei Blenniidae (Pisces) aus dem Roten Meer. I. Aussere Morphologie. Mar. Biol. 13: 238–246.

    Google Scholar 

  • Zander, C.D. 1983. Terrestrial sojourns of two Mediterranean blennioid fish. Senckenbergiana marit. 15: 19–26.

    Google Scholar 

  • Zander, C.D., J. Nieder & K.L.M. Martin. 1999. Vertical distribution patterns. pp. 26–53. In: M. Horn, K. Martin & M. Chotkowski (ed.) Intertidal Fishes: Life in Two Words, Academic Press, San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luck, A.S., Martin, K.L. Tolerance of forced air emergence by a fish with a broad vertical distribution, the rockpool blenny, Hypsoblennius gilberti (Blenniidae). Environmental Biology of Fishes 54, 295–301 (1999). https://doi.org/10.1023/A:1007584406324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007584406324

Navigation